# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899131
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.0234749
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0358037296  0.0084130986  0.0186964768  0.0232645765  0.0259720998
##   [6]  0.0226594995  0.0434874181  0.0231453317 -0.0000118343  0.0526167614
##  [11] -0.0079387038  0.0246508589  0.0365478553 -0.0179397336  0.0084788102
##  [16] -0.0389297052  0.0278468380  0.0322199529  0.0222404190  0.0125077751
##  [21] -0.0100109127 -0.0389032042  0.0233627406  0.0086675375 -0.0081453351
##  [26]  0.0261267538  0.0063981866  0.0300584852 -0.0079713108  0.0419331386
##  [31]  0.0145460208  0.0225586183 -0.0081455826  0.0080862251  0.0140375121
##  [36]  0.0071111133  0.0036736840  0.0034707593  0.0047263863  0.0406961659
##  [41]  0.0281883840  0.0077207500  0.0297605728  0.0100716534  0.0179450851
##  [46]  0.0077710379 -0.0205531564 -0.0126424815 -0.0272227629  0.0359920393
##  [51]  0.0013555850 -0.0117309902  0.0439884082 -0.0197669145 -0.0012235356
##  [56] -0.0179988103 -0.0002462248  0.0417033691 -0.0003797219  0.0331731864
##  [61] -0.0106987549 -0.0110039350  0.0041585266  0.0014082403  0.0075440182
##  [66]  0.0174287271  0.0023770082  0.0278225423  0.0120487406 -0.0203079574
##  [71] -0.0219170024 -0.0027425288 -0.0016927786  0.0057079021  0.0418184583
##  [76] -0.0014543905  0.0314747430  0.0117733458  0.0007422958  0.0525921357
##  [81] -0.0135492672 -0.0067569836  0.0358786352 -0.0215889276 -0.0323567483
##  [86]  0.0095748719 -0.0291881035  0.0109574534  0.0288606632  0.0197171850
##  [91]  0.0197639913 -0.0089961184  0.0006961572  0.0088885416 -0.0046653999
##  [96] -0.0280420168  0.0361120106  0.0087574235 -0.0006197894 -0.0339941874
## [101]  0.0087486798  0.0029585880 -0.0109213203  0.0188440915  0.0246218524
## [106] -0.0264221348  0.0058046615  0.0530256382  0.0271589196  0.0237504954
## [111] -0.0365801452 -0.0118120293  0.0099939808  0.0134509624 -0.0030397116
## [116]  0.0062697607  0.0454753318  0.0350752663 -0.0141065845  0.0115090820
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1    1   
##  2    1.04
##  3    1.01
##  4    1.02
##  5    1.02
##  6    1.03
##  7    1.02
##  8    1.04
##  9    1.02
## 10    1.00
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.04
##  3   1.04
##  4   1.06
##  5   1.09
##  6   1.12
##  7   1.14
##  8   1.19
##  9   1.22
## 10   1.22
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 10.31028

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
       # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)

    
}
    
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>% tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   326.
## 2   323.
## 3   325.
## 4   331.
## 5   332.
## 6   330.

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# for reproducible research
set.seed(1234)

monte_carlo_sim_51 <- starts %>%
    
    #Simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x, 
                                        N             = 120, 
                                        mean_return   = mean_port_return, 
                                        sd_return     = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything())%>%
    
    # Rename column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months")

    # Step 1: Summarize data into max, median and min if last value
    sim_summary <- monte_carlo_sim_51 %>%
        
        group_by(sim) %>%
        summarise(growth = last(growth)) %>%
        ungroup() %>%
        
        summarise(max    = max(growth),
                  median = median(growth),
                  min    = min(growth))
    
    sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
    # Step 2 Plot
    monte_carlo_sim_51 %>%
        
        # Filter for max, median, and min sim
        group_by(sim) %>%
        filter(last(growth) == sim_summary$max |
                   last(growth) == sim_summary$median |
                   last(growth) == sim_summary$min) %>%
        ungroup() %>%
    
         # Plot
        ggplot(aes(x = month, y = growth, color = sim)) +
        geom_line() +
        theme(legend.position = "none") +
        theme(plot.title = element_text(hjust = 0.5)) +
        theme(plot.subtitle = element_text(hjust = 0.5)) +
        
        labs(title = "Simulating growth of $1 over 120 months",
             subtitle = "Maximum, Median, and Minimum Simulation")