# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899134
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0001387232  0.0081299344  0.0379596369  0.0180492660  0.0189740215
##   [6] -0.0071479811 -0.0270392048  0.0251277621  0.0102185800 -0.0106558614
##  [11] -0.0056770835  0.0035288532 -0.0226253314  0.0169871553  0.0071122698
##  [16] -0.0063341981 -0.0215102848 -0.0138651303 -0.0164809533 -0.0261114440
##  [21] -0.0035176910 -0.0205659895  0.0669980657 -0.0028909033  0.0096502480
##  [26]  0.0170409615  0.0376642941  0.0268991790  0.0034209923 -0.0414054745
##  [31] -0.0018277732 -0.0175842442 -0.0329363636 -0.0237413887 -0.0372949588
##  [36]  0.0270634094  0.0117296755 -0.0220329110  0.0535085752  0.0226148781
##  [41]  0.0484713186 -0.0203143882  0.0056468633  0.0238218828  0.0349931218
##  [46] -0.0249688670  0.0207458576  0.0225768238  0.0016948944  0.0406467179
##  [51]  0.0098957237  0.0364257538  0.0054075025  0.0045473718  0.0404504272
##  [56] -0.0140963042 -0.0051915007 -0.0036449283  0.0078668509 -0.0145132021
##  [61]  0.0048460327  0.0180496028  0.0179391543 -0.0022857752  0.0036713106
##  [66]  0.0098486180  0.0186255727 -0.0057857306 -0.0307223191  0.0042683662
##  [71] -0.0363815113  0.0295553667 -0.0062511201  0.0035780732 -0.0122837701
##  [76]  0.0165094315  0.0191602156 -0.0366484600  0.0465420790  0.0267496928
##  [81]  0.0209692784  0.0160173521  0.0279651605  0.0394851378  0.0314655065
##  [86]  0.0489959410  0.0389422120  0.0034646415 -0.0338395057  0.0259524819
##  [91]  0.0535224262  0.0106602294 -0.0059603493  0.0252214846  0.0203152340
##  [96] -0.0047637121 -0.0625740172 -0.0027242670  0.0208521614 -0.0059899805
## [101]  0.0223038331 -0.0381313704 -0.0257015706  0.0102438039 -0.0115725287
## [106]  0.0022458967  0.0323221857 -0.0200326904  0.0041191566 -0.0039408642
## [111]  0.0089014319  0.0308477828  0.0241364153  0.0180812612  0.0030897358
## [116] -0.0287984270 -0.0065511975  0.0220289192 -0.0098819615 -0.0200596251
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.00 
##  3   1.01 
##  4   1.04 
##  5   1.02 
##  6   1.02 
##  7   0.993
##  8   0.973
##  9   1.03 
## 10   1.01 
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.00
##  3   1.01
##  4   1.05
##  5   1.07
##  6   1.09
##  7   1.08
##  8   1.05
##  9   1.08
## 10   1.09
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 6.369905

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {

    #add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    #calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x,y) x*y)) %>%
        
        return(simulated_growth)
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>% 
    tail()
## # A tibble: 6 × 2
##   returns growth
##     <dbl>  <dbl>
## 1   1.00    296.
## 2   1.01    299.
## 3   1.00    300.
## 4   0.999   300.
## 5   1.00    300.
## 6   0.994   299.
dump(list = c("simulate_accumulation"),
     file = "../Desktop/PSU_FIN3100_FinancialAnalytics/00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
set.seed(1234)

# Simulate
monte_carlo_sim_51 <- starts %>%

    # Simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                 N     = 120,
                mean_return  = mean_port_return,
                 sd_return = stddev_port_return)) %>%

    # Add the column, month
    mutate(month = (1:nrow(.))) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
   

    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 12,342 × 3
##    month sim         growth
##    <int> <chr>        <dbl>
##  1     1 returns...1      1
##  2     1 growth...2       1
##  3     1 returns...3      1
##  4     1 growth...4       1
##  5     1 returns...5      1
##  6     1 growth...6       1
##  7     1 returns...7      1
##  8     1 growth...8       1
##  9     1 returns...9      1
## 10     1 growth...10      1
## # ℹ 12,332 more rows
# Find quantiles

monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%

    # Find the quantiles
    quantile(probs = c(0,0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 0.96 1.00 1.12 1.98 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%

    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "simulating growth of $1 over 120 months")

sim_summary <- monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%

    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.12 0.957
monte_carlo_sim_51 %>%

    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
           last(growth) == sim_summary$median |
           last(growth) == sim_summary$min) %>%
    ungroup() %>%

    ggplot(aes(x = month,y = growth, color = sim)) +
    geom_line() +
    
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "simulating growth of $1 over 120 months",
         subtitle = "Maxixum, Median, and Minimun Simulation")