library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
library(summarytools)
## Warning in fun(libname, pkgname): couldn't connect to display ":0"
## system might not have X11 capabilities; in case of errors when using dfSummary(), set st_options(use.x11 = FALSE)
## 
## Attaching package: 'summarytools'
## 
## The following object is masked from 'package:tibble':
## 
##     view
library(leaflet)
TRIGO <- read_excel("TRIGO.xlsx")

##Parcela elegida ubicada en Pergamino, Buenos Aires.

leaflet() %>% addProviderTiles(providers$Esri.WorldImagery) %>% 
  setView(lng = -60.36, lat = -33.52, zoom = 17)
leaflet() %>% 
  addProviderTiles(providers$Esri.WorldImagery)%>% 
  addMarkers(lng = -60.606126, lat = -33.872252) %>% 
  addLayersControl( baseGroups = c("Mapa Base"), overlayGroups = c("Marcadores") )
leaflet() %>% 
  addProviderTiles(providers$Esri.WorldImagery)%>% 
  addTiles() %>% 
  addPolygons(lng = c(-60.602703, -60.607939, -60.609398, -60.604120), lat = c(-33.871514,-33.869811, -33.872831, -33.874577), color = "blue") %>% 
  addMarkers(lng = -60.606126, lat = -33.872252) 
PERGAMINO <- TRIGO %>%
  filter(LOCALIDAD == "PER")
PERGAMINO
## # A tibble: 249 × 5
##     ANIO LOCALIDAD TRATAMIENTO GENOTIPO       RENDIMIENTO
##    <dbl> <chr>     <chr>       <chr>                <dbl>
##  1  2007 PER       SinFung     ONIX                  3200
##  2  2007 PER       SinFung     ONIX                  3660
##  3  2007 PER       SinFung     B75ANIVERSARIO        5700
##  4  2007 PER       SinFung     ACA901                5400
##  5  2007 PER       SinFung     ACA901                4740
##  6  2007 PER       SinFung     B75ANIVERSARIO        5400
##  7  2007 PER       SinFung     BIOINTA1001           5700
##  8  2007 PER       SinFung     BIOINTA1001           4700
##  9  2007 PER       SinFung     B75ANIVERSARIO        4800
## 10  2007 PER       SinFung     ACA801                4260
## # ℹ 239 more rows

#Se puede observar que en la localidad no se realizaron tratamientos con fungicidas.

glimpse (PERGAMINO)
## Rows: 249
## Columns: 5
## $ ANIO        <dbl> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007…
## $ LOCALIDAD   <chr> "PER", "PER", "PER", "PER", "PER", "PER", "PER", "PER", "P…
## $ TRATAMIENTO <chr> "SinFung", "SinFung", "SinFung", "SinFung", "SinFung", "Si…
## $ GENOTIPO    <chr> "ONIX", "ONIX", "B75ANIVERSARIO", "ACA901", "ACA901", "B75…
## $ RENDIMIENTO <dbl> 3200, 3660, 5700, 5400, 4740, 5400, 5700, 4700, 4800, 4260…
ggplot(TRIGO, aes(RENDIMIENTO, GENOTIPO, color = GENOTIPO)) + 
  geom_boxplot() +
  theme(legend.position = "none", )

ggplot(PERGAMINO, aes(RENDIMIENTO, TRATAMIENTO, color = TRATAMIENTO)) + 
  geom_boxplot() +
  stat_summary(fun = mean, color = "black")
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_segment()`).

PERGAMINO %>%
  select(RENDIMIENTO) %>%
  summarise(MEDIA = mean(RENDIMIENTO))
## # A tibble: 1 × 1
##   MEDIA
##   <dbl>
## 1 4244.
PERGAMINO %>%
  group_by(GENOTIPO) %>%
  summarise(RENDIMIENT_MEDIA = mean(RENDIMIENTO))
## # A tibble: 32 × 2
##    GENOTIPO       RENDIMIENT_MEDIA
##    <chr>                     <dbl>
##  1 ACA801                    4120 
##  2 ACA901                    4145.
##  3 ACA903                    3682.
##  4 ACA905                    5613.
##  5 ACA906                    4111.
##  6 ACA907                    6567.
##  7 AGPFast                   4237.
##  8 ATLAX                     4840 
##  9 Arex                      4234.
## 10 B75ANIVERSARIO            5040 
## # ℹ 22 more rows
Resumen_trigo <- PERGAMINO %>% 
  group_by(GENOTIPO) %>% 
  summarise(MINIMUM = min(RENDIMIENTO),
            MEAN = mean(RENDIMIENTO),
            MEDIAN = median(RENDIMIENTO),
            MAXIMUM = max(RENDIMIENTO))
Resumen_trigo
## # A tibble: 32 × 5
##    GENOTIPO       MINIMUM  MEAN MEDIAN MAXIMUM
##    <chr>            <dbl> <dbl>  <dbl>   <dbl>
##  1 ACA801            4000 4120    4100    4260
##  2 ACA901            1680 4145.   4900    5860
##  3 ACA903            1500 3682.   3510    6100
##  4 ACA905            5400 5613.   5640    5800
##  5 ACA906            2480 4111.   3980    6160
##  6 ACA907            6000 6567.   6800    6900
##  7 AGPFast           3190 4237.   4400    5200
##  8 ATLAX             3900 4840    4960    6000
##  9 Arex              1720 4234.   4430    6000
## 10 B75ANIVERSARIO    4600 5040    4900    5700
## # ℹ 22 more rows
PERGAMINO %>% 
  group_by(GENOTIPO) %>%
  descr(RENDIMIENTO)
## Descriptive Statistics  
## RENDIMIENTO by GENOTIPO  
## Data Frame: PERGAMINO  
## N: 3  
## 
##                      ACA801    ACA901    ACA903    ACA905    ACA906    ACA907   AGPFast     ATLAX
## ----------------- --------- --------- --------- --------- --------- --------- --------- ---------
##              Mean   4120.00   4145.33   3681.67   5613.33   4110.83   6566.67   4236.67   4840.00
##           Std.Dev    131.15   1618.45   1899.50    201.33   1531.25    493.29    798.04    792.28
##               Min   4000.00   1680.00   1500.00   5400.00   2480.00   6000.00   3190.00   3900.00
##                Q1   4000.00   2310.00   1930.00   5400.00   2640.00   6000.00   3350.00   4100.00
##            Median   4100.00   4900.00   3510.00   5640.00   3980.00   6800.00   4400.00   4960.00
##                Q3   4260.00   5600.00   5420.00   5800.00   5580.00   6900.00   4840.00   5500.00
##               Max   4260.00   5860.00   6100.00   5800.00   6160.00   6900.00   5200.00   6000.00
##               MAD    148.26   1393.64   2498.18    237.22   2097.88    148.26    978.52   1156.43
##               IQR    130.00   3125.00   3440.00    200.00   2855.00    450.00   1490.00   1400.00
##                CV      0.03      0.39      0.52      0.04      0.37      0.08      0.19      0.16
##          Skewness      0.15     -0.33      0.08     -0.13      0.08     -0.37     -0.26      0.15
##       SE.Skewness      1.22      0.58      0.64      1.22      0.64      1.22      0.72      0.72
##          Kurtosis     -2.33     -1.81     -2.01     -2.33     -2.02     -2.33     -1.79     -1.81
##           N.Valid      3.00     15.00     12.00      3.00     12.00      3.00      9.00      9.00
##         Pct.Valid    100.00    100.00    100.00    100.00    100.00    100.00    100.00    100.00
## 
## Table: Table continues below
## 
##  
## 
##                        Arex   B75ANIVERSARIO   BIOINTA1001   BUCKPUELCHE   Baguette501   Biointa1005
## ----------------- --------- ---------------- ------------- ------------- ------------- -------------
##              Mean   4234.17          5040.00       5220.00       5666.67       3186.67       3774.00
##           Std.Dev   1641.35           349.14        501.20        455.31        241.94       1822.56
##               Min   1720.00          4600.00       4700.00       5000.00       3000.00       1500.00
##                Q1   2785.00          4860.00       4700.00       5300.00       3000.00       1710.00
##            Median   4430.00          4900.00       5260.00       5720.00       3100.00       4300.00
##                Q3   5840.00          5300.00       5700.00       6060.00       3460.00       5600.00
##               Max   6000.00          5700.00       5700.00       6200.00       3460.00       5900.00
##               MAD   2127.53           148.26        652.34        563.39        148.26       2223.90
##               IQR   2862.50           440.00        500.00        610.00        230.00       3805.00
##                CV      0.39             0.07          0.10          0.08          0.08          0.48
##          Skewness     -0.15             0.62         -0.08         -0.23          0.31         -0.16
##       SE.Skewness      0.64             0.72          1.22          0.85          1.22          0.58
##          Kurtosis     -1.86            -1.10         -2.33         -1.76         -2.33         -1.89
##           N.Valid     12.00             9.00          3.00          6.00          3.00         15.00
##         Pct.Valid    100.00           100.00        100.00        100.00        100.00        100.00
## 
## Table: Table continues below
## 
##  
## 
##                     Biointa1006   Biointa1007   BuckPleno    Cronox   Floripan100   KLEINCASTOR
## ----------------- ------------- ------------- ----------- --------- ------------- -------------
##              Mean       4105.33       1826.67     3330.00   4073.33       2946.67       4853.33
##           Std.Dev       1346.86        199.37      135.28   1637.89        725.86        516.27
##               Min       2160.00       1460.00     3190.00   1720.00       1530.00       4260.00
##                Q1       2620.00       1750.00     3190.00   2560.00       3040.00       4260.00
##            Median       4500.00       1900.00     3340.00   4200.00       3130.00       5100.00
##                Q3       5000.00       1960.00     3460.00   5700.00       3220.00       5200.00
##               Max       6240.00       1990.00     3460.00   6000.00       3630.00       5200.00
##               MAD       2164.60        111.19      177.91   2431.46        133.43        148.26
##               IQR       2090.00        177.50      135.00   3140.00        170.00        470.00
##                CV          0.33          0.11        0.04      0.40          0.25          0.11
##          Skewness          0.05         -0.87       -0.07     -0.11         -1.08         -0.37
##       SE.Skewness          0.58          0.85        1.22      0.72          0.85          1.22
##          Kurtosis         -1.52         -0.96       -2.33     -1.73         -0.44         -2.33
##           N.Valid         15.00          6.00        3.00      9.00          6.00          3.00
##         Pct.Valid        100.00        100.00      100.00    100.00        100.00        100.00
## 
## Table: Table continues below
## 
##  
## 
##                     KLEINCHAJA   KleinLeon   KleinNutria   KleinRayo   KleinTIGRE   KleinTauro
## ----------------- ------------ ----------- ------------- ----------- ------------ ------------
##              Mean      4633.33     4873.33       4475.00     4163.33      4622.22      4624.67
##           Std.Dev       351.19      664.73       1153.98     1107.74      1196.14       959.08
##               Min      4300.00     4100.00       2680.00     2580.00      2860.00      2990.00
##                Q1      4300.00     4340.00       3525.00     3130.00      3300.00      3800.00
##            Median      4600.00     4750.00       4470.00     4310.00      5000.00      5100.00
##                Q3      5000.00     5500.00       5700.00     5120.00      5540.00      5300.00
##               Max      5000.00     5800.00       5800.00     5440.00      6100.00      5800.00
##               MAD       444.78      785.78       1593.79     1512.25      1037.82       830.26
##               IQR       350.00      945.00       2167.50     1960.00      2240.00      1450.00
##                CV         0.08        0.14          0.26        0.27         0.26         0.21
##          Skewness         0.09        0.23         -0.08       -0.08        -0.34        -0.46
##       SE.Skewness         1.22        0.85          0.64        0.64         0.72         0.58
##          Kurtosis        -2.33       -1.86         -1.82       -1.97        -1.71        -1.41
##           N.Valid         3.00        6.00         12.00       12.00         9.00        15.00
##         Pct.Valid       100.00      100.00        100.00      100.00       100.00       100.00
## 
## Table: Table continues below
## 
##  
## 
##                     KleinZorro    LE2330    LE2331    LE2357      ONIX     SY300
## ----------------- ------------ --------- --------- --------- --------- ---------
##              Mean      4792.50   1326.67   3506.67   4773.33   3600.00   5190.00
##           Std.Dev       981.09     57.74   1106.80    360.74    373.63    461.95
##               Min      2900.00   1260.00   2300.00   4400.00   3200.00   4700.00
##                Q1      4195.00   1260.00   2740.00   4400.00   3200.00   4700.00
##            Median      5230.00   1360.00   3100.00   4800.00   3660.00   5220.00
##                Q3      5420.00   1360.00   4740.00   5120.00   3940.00   5600.00
##               Max      5660.00   1360.00   5040.00   5120.00   3940.00   5700.00
##               MAD       444.78      0.00    978.52    474.43    415.13    637.52
##               IQR       832.50     50.00   2000.00    360.00    370.00    815.00
##                CV         0.20      0.04      0.32      0.08      0.10      0.09
##          Skewness        -0.93     -0.38      0.42     -0.07     -0.16     -0.03
##       SE.Skewness         0.64      1.22      0.72      1.22      1.22      0.85
##          Kurtosis        -0.96     -2.33     -1.77     -2.33     -2.33     -2.18
##           N.Valid        12.00      3.00      9.00      3.00      3.00      6.00
##         Pct.Valid       100.00    100.00    100.00    100.00    100.00    100.00
ACA907 <- TRIGO %>%
  filter(GENOTIPO == "ACA907") %>%
  filter(LOCALIDAD == "PER")
ACA907
## # A tibble: 3 × 5
##    ANIO LOCALIDAD TRATAMIENTO GENOTIPO RENDIMIENTO
##   <dbl> <chr>     <chr>       <chr>          <dbl>
## 1  2010 PER       SinFung     ACA907          6000
## 2  2010 PER       SinFung     ACA907          6800
## 3  2010 PER       SinFung     ACA907          6900
ACA907 %>% 
  descr(RENDIMIENTO)
## Descriptive Statistics  
## ACA907$RENDIMIENTO  
## N: 3  
## 
##                     RENDIMIENTO
## ----------------- -------------
##              Mean       6566.67
##           Std.Dev        493.29
##               Min       6000.00
##                Q1       6000.00
##            Median       6800.00
##                Q3       6900.00
##               Max       6900.00
##               MAD        148.26
##               IQR        450.00
##                CV          0.08
##          Skewness         -0.37
##       SE.Skewness          1.22
##          Kurtosis         -2.33
##           N.Valid          3.00
##         Pct.Valid        100.00
ggplot(ACA907, aes(RENDIMIENTO, GENOTIPO, color = GENOTIPO)) + 
  geom_boxplot() +
  stat_summary(fun = mean, color = "black")
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_segment()`).

ACA905 <- TRIGO %>%
  filter(GENOTIPO == "ACA905") %>%
  filter(LOCALIDAD == "PER")
ACA905
## # A tibble: 3 × 5
##    ANIO LOCALIDAD TRATAMIENTO GENOTIPO RENDIMIENTO
##   <dbl> <chr>     <chr>       <chr>          <dbl>
## 1  2011 PER       SinFung     ACA905          5640
## 2  2011 PER       SinFung     ACA905          5400
## 3  2011 PER       SinFung     ACA905          5800
ACA905 %>% 
  descr(RENDIMIENTO)
## Descriptive Statistics  
## ACA905$RENDIMIENTO  
## N: 3  
## 
##                     RENDIMIENTO
## ----------------- -------------
##              Mean       5613.33
##           Std.Dev        201.33
##               Min       5400.00
##                Q1       5400.00
##            Median       5640.00
##                Q3       5800.00
##               Max       5800.00
##               MAD        237.22
##               IQR        200.00
##                CV          0.04
##          Skewness         -0.13
##       SE.Skewness          1.22
##          Kurtosis         -2.33
##           N.Valid          3.00
##         Pct.Valid        100.00
ggplot(ACA905, aes(RENDIMIENTO, GENOTIPO, color = GENOTIPO)) + 
  geom_boxplot() +
  stat_summary(fun = mean, color = "black")
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_segment()`).

CONCLUSIONES: Entre todas las variedades sembradas en Pergamino. localidad de Buenos Aires, recomiendo la variedad ACA905 debido a su alta media de rendimiento, su baja desviación estandar y sus altos valores mínimos y máximos de rendimiento en comparación con sus pares puestos a prueba. Dicha variedad se destaca entre las demás por su alto rendimiento y baja variabilidad, determinando un buen genotipo para siembra si lo que se busca es una alta eficiencia sin posibilidad de tener mucha diferencia con el rendimiento estimado.