# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(dplyr)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899138
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347492
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1] -0.0054444156 -0.0090687643 -0.0089247806 -0.0020755011 -0.0071155426
##   [6]  0.0242941588  0.0074297062  0.0136965180 -0.0083679715 -0.0123705328
##  [11] -0.0260312456  0.0070056777 -0.0503035822  0.0412592985  0.0229225260
##  [16]  0.0202927081  0.0122888792  0.0483434339  0.0263589389  0.0145232002
##  [21]  0.0448416424  0.0008030043  0.0294142895  0.0104578015 -0.0089182025
##  [26]  0.0104112854  0.0091893880 -0.0023382669 -0.0072108427 -0.0089403113
##  [31] -0.0119553452 -0.0112018659 -0.0036278691  0.0315472770 -0.0378044761
##  [36]  0.0331140395  0.0081488033  0.0028361492  0.0229176185  0.0341535751
##  [41]  0.0021324813 -0.0098557549 -0.0192127204  0.0177601981 -0.0099561577
##  [46]  0.0181680497 -0.0229725296  0.0293464594 -0.0214801677 -0.0063529242
##  [51] -0.0017945144 -0.0071839433 -0.0177100371  0.0175903446  0.0302137506
##  [56] -0.0073072818 -0.0332220058 -0.0164796839  0.0639892675  0.0458763969
##  [61] -0.0111167956  0.0079005021  0.0008123683 -0.0026268755  0.0318621582
##  [66]  0.0103503608  0.0162813198  0.0142797604  0.0281737925  0.0664998842
##  [71]  0.0413230566  0.0039221272 -0.0077149617 -0.0067063465  0.0193404348
##  [76] -0.0174274878  0.0187139044 -0.0132086273  0.0038155884  0.0342164284
##  [81]  0.0321210599 -0.0036699759  0.0448444069  0.0200938029  0.0026413822
##  [86]  0.0002789540  0.0220986526  0.0038441254 -0.0230928312  0.0472171090
##  [91]  0.0047404182 -0.0400010194 -0.0071099847  0.0289139465 -0.0178653612
##  [96]  0.0145137685  0.0161117735  0.0104330511  0.0006858834  0.0077759681
## [101]  0.0230238198 -0.0065053082  0.0190082118 -0.0407711044  0.0231503386
## [106]  0.0198932428 -0.0152585975  0.0237599320  0.0239282826  0.0275671442
## [111]  0.0241541192 -0.0154011381 -0.0046715137 -0.0198577893 -0.0176805732
## [116] -0.0132622863  0.0199138326  0.0287938368 -0.0029116871 -0.0121797685
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   0.995
##  3   0.991
##  4   0.991
##  5   0.998
##  6   0.993
##  7   1.02 
##  8   1.01 
##  9   1.01 
## 10   0.992
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.995
##  3  0.986
##  4  0.977
##  5  0.975
##  6  0.968
##  7  0.991
##  8  0.999
##  9  1.01 
## 10  1.00 
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 7.933455

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
     # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = .01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   380.
## 2   386.
## 3   394.
## 4   396.
## 5   399.
## 6   402.
dump(list = c("simulate_accumulation"), 
     file = "../00_scripts/simulate-accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                                        N             = 120,
                                        mean_return   = mean_port_return,
                                        sd_return     = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.35 1.63 1.97 2.41 4.09

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months") 

Line plot with max, median, and min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max    = max(growth),
              median = median(growth),
              min    = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  4.09   1.97  1.35
# Step 2 Plot
monte_carlo_sim_51 %>%
    
    # Filter for max, median, and min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    
    ungroup() %>% 
    
    #plot
     ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") + 
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating growth of $1 over 120 months", 
         subtitle = "Maximum, Median, and Minimum Simulation")