Created by Riley Kearney. Updated 12/2/2024
Thesis
Median household income, local revenue, enrollment, and unemployment
are significant factors infuencing proficiency scores in county
schools.
Data
The data used this project includes unemployment demographics, county
revenues and spending, and proficiency scores for various counties.
These data sets were provided by Professor Garrett. Additionally, I
incorporated median family income and region data for each county.
Key Variables Included:
tlocrev: local revenue for each county in dollars
enroll: enrollment for schools in each county
med_income: median family income in each county
unemployed: unemployment rate for each county
proficiency: proficiency scores in each county
Methods
Correlations

Above is a correlation graph for me to see the different correlations
between the variables in my data set.
PCA

This PCA graph shows me that since proficiency and unemployment point
in opposite directions, there is a negative correlation between the two.
Proficiency and average household income have a very strong positive
correlation, as well as the number enrolled and the local revenue.
Decision Tree

Counties with higher local revenue tend to have higher predicted
proficiency scores. In contrast, counties with lower local revenues tend
to have more splits in the decision tree, indicating the presence of
distinct subgroup behaviors. For example, even within the group of
counties with lower local revenues, those with lower enrollment (below
or equal to 2,255) and greater average income tend to have a high
predicted proficiency score.
Neural Network
I haven’t been able to start this visualization yet.
Prediction
Still need to do.
Limitations
Still need to do.
Resources
Sources Included:
LS0tCnRpdGxlOiAiUHJvamVjdCAzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCkNyZWF0ZWQgYnkgUmlsZXkgS2Vhcm5leS4gVXBkYXRlZCAxMi8yLzIwMjQKCiMjIyBUaGVzaXMgCk1lZGlhbiBob3VzZWhvbGQgaW5jb21lLCBsb2NhbCByZXZlbnVlLCBlbnJvbGxtZW50LCBhbmQgdW5lbXBsb3ltZW50IGFyZSBzaWduaWZpY2FudCBmYWN0b3JzIGluZnVlbmNpbmcgcHJvZmljaWVuY3kgc2NvcmVzIGluIGNvdW50eSBzY2hvb2xzLiAKCgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBpbmNsdWRlPUZBTFNFLCBwYWdlZC5wcmludD1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoY2FyZXQpCmxpYnJhcnkocnBhcnQpCmxpYnJhcnkocmVhZHhsKQphc3Nlc3NtZW50X3BhdGggPC0gJy4vd3YgZWQgc3R1ZGVudCBhY2hpZXZlbWVudC9IaXN0b3JpY2FsX0Fzc2Vzc21lbnRSZXN1bHRzX1NZMTUtdG8tU1kyMS54bHN4JwoKCnRfYXNzZXNzX3Jhd19zY2hvb2wgPC0gcmVhZF9leGNlbChwYXRoID0gYXNzZXNzbWVudF9wYXRoLAogICAgICAgICAgICAgICAgICAgICAgICAgICBzaGVldCA9ICdTWTIxIFNjaG9vbCAmIERpc3RyaWN0JywKICAgICAgICAgICAgICAgICAgICAgICAgICAgcmFuZ2UgPSAnYjI6ZjczMTInKQoKCnRfYXNzZXNzX3Jhd19zY2llbmNlIDwtIHJlYWRfZXhjZWwocGF0aCA9IGFzc2Vzc21lbnRfcGF0aCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgc2hlZXQgPSAnU1kyMSBTY2hvb2wgJiBEaXN0cmljdCcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHJhbmdlID0gJ2RiMzpkYjczMTInLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgY29sX25hbWVzID0gYygnc2NpZW5jZV9wcm9maWNpZW5jeScpLAogICAgICAgICAgICAgICAgICAgICAgICAgICBuYSA9ICcqKicpCgp0X2Fzc2Vzc19yYXcgPC0gdF9hc3Nlc3NfcmF3X3NjaG9vbCAlPiUKICBiaW5kX2NvbHModF9hc3Nlc3NfcmF3X3NjaWVuY2UpICU+JSAKICBqYW5pdG9yOjpjbGVhbl9uYW1lcygpICAKCgojIFJlbW92ZSBzdWJncm91cHMKdF9hc3Nlc3MgPC0gdF9hc3Nlc3NfcmF3ICU+JSAKICBmaWx0ZXIoc2Nob29sID09IDk5OSkgJT4lIAogIGZpbHRlcihwb3B1bGF0aW9uX2dyb3VwID09ICdUb3RhbCBQb3B1bGF0aW9uJykgJT4lIAogIGZpbHRlcihjb3VudHkgIT0gJ1N0YXRld2lkZScpICU+JSAKICBtdXRhdGUocHJvZmljaWVuY3kgPSBzY2llbmNlX3Byb2ZpY2llbmN5KSAgCgojIEFkZCByZWdpb25zCnJlZ2lvbnMgPC0gcmVhZF9jc3YoJ3d2X3JlZ2lvbnMuY3N2JykKdF9hc3Nlc3MgPC0gbGVmdF9qb2luKHRfYXNzZXNzLCByZWdpb25zLCBieSA9ICdjb3VudHknKQoKIyBBc3NpZ24gbnVtYmVyIHRvIGVhY2ggcmVnaW9uCnRfYXNzZXNzIDwtIHRfYXNzZXNzICU+JSAKICBtdXRhdGUocmVnaW9uX251bWJlciA9IGFzLm51bWVyaWMoZmFjdG9yKHJlZ2lvbikpKQoKcHJpbnQodF9hc3Nlc3MpCmBgYAoKCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsIGluY2x1ZGU9RkFMU0UsIHBhZ2VkLnByaW50PUZBTFNFfQpzcGVuZGluZ19wYXRoIDwtICcuL3VzIGNlbnN1cyBlZCBzcGVuZGluZy9lbHNlYzIydC54bHMnCgp0X3NwZW5kaW5nX3JhdyA8LSByZWFkX2V4Y2VsKHBhdGggPSBzcGVuZGluZ19wYXRoLCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgc2hlZXQgPSAnZWxzZWMyMnQnLAogICAgICAgICAgICAgICAgICAgICAgICAgICByYW5nZSA9ICdhMTpnYjE0MTA2JykgJT4lIAogIGphbml0b3I6OmNsZWFuX25hbWVzKCkKCgpjb29wZXJhdGVzIDwtIGMoJ01PVU5UQUlOIFNUQVRFIEVEVUNBVElPTkFMIFNFUlZJQ0VTIENPT1BFUkFUSVZFJywKICAgICAgICAgICAgICAgICdFQVNURVJOIFBBTkhBTkRMRSBJTlNUUlVDVElPTkFMIENPT1BFUkFUSVZFJywKICAgICAgICAgICAgICAgICdTT1VUSEVSTiBFRFVDQVRJT05BTCBTRVJWSUNFUyBDT09QRVJBVElWRScpCgp0X3NwZW5kaW5nIDwtIHRfc3BlbmRpbmdfcmF3ICU+JSAKICBmaWx0ZXIoc3RhdGUgPT0gNDkpICU+JSAKICBmaWx0ZXIoIW5hbWUgJWluJSBjb29wZXJhdGVzKSAlPiUgCiAgc2VsZWN0KG5hbWUsIGVucm9sbCwgdGZlZHJldiwgdHN0cmV2LCB0bG9jcmV2LCB0b3RhbGV4cCwgcHBjc3RvdCkgJT4lIAogIG11dGF0ZShjb3VudHkgPSBzdHJfdG9fdGl0bGUoc3RyX3NwbGl0X2kobmFtZSwgJyAnLDEpKSwKICAgICAgICAgY291bnR5ID0gaWZlbHNlKGNvdW50eSA9PSAnTWMnLCAnTWNEb3dlbGwnLCBjb3VudHkpKQoKCnByaW50KHRfc3BlbmRpbmcpCmBgYAoKCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsIGluY2x1ZGU9RkFMU0UsIHBhZ2VkLnByaW50PUZBTFNFfQoKICAKCnRfZGVtb2dyYXBoaWNzX3VuZW1wbG95ZWQgPC0gcmVhZF9jc3YoJy4vZGVtb2dyYXBoaWNzL3VuZW1wbG95ZWQuY3N2JywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBza2lwID0gNCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5hID0gJ04vQScpICU+JQogIGphbml0b3I6OmNsZWFuX25hbWVzKCkgJT4lIAogIGZpbHRlcihjb3VudHkgIT0gJ1dlc3QgVmlyZ2luaWEnLAogICAgICAgICBjb3VudHkgIT0gJ1VuaXRlZCBTdGF0ZXMnLAogICAgICAgICAhaXMubmEodmFsdWVfcGVyY2VudCkgKSAlPiUgCiAgc2VsZWN0KGNvdW50eSwgdmFsdWVfcGVyY2VudCkgJT4lCiAgcmVuYW1lKHVuZW1wbG95ZWQgPSB2YWx1ZV9wZXJjZW50KQoKCnRfdW5lbXBsb3llZCA8LSAgdF9kZW1vZ3JhcGhpY3NfdW5lbXBsb3llZAoKdF91bmVtcGxveWVkJGNvdW50eSA8LSBzdHJfcmVwbGFjZSh0X3VuZW1wbG95ZWQkY291bnR5LCAiIENvdW50eSIsICIiKQoKcHJpbnQodF91bmVtcGxveWVkKQpgYGAKCgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBpbmNsdWRlPUZBTFNFLCBwYWdlZC5wcmludD1GQUxTRX0KbGlicmFyeShzdHJpbmdyKQppbmNvbWVfcmF3IDwtIHJlYWRfY3N2KCdIRFB1bHNlX2RhdGFfZXhwb3J0LmNzdicsIAogICAgICAgICAgICAgICAgICAgICAgIHNraXAgPSA2KQpob3VzZWhvbGRfaW5jb21lIDwtIGluY29tZV9yYXcgJT4lIAogIHJlbmFtZShjb3VudHkgPSAnVW5pdGVkIFN0YXRlcycsIAogICAgICAgICBtZWRfaW5jb21lID0gJzkyLDY0NicpICU+JSAKICBmaWx0ZXIoIWlzLm5hKG1lZF9pbmNvbWUpKSAlPiUgCiAgc2VsZWN0KGNvdW50eSwgbWVkX2luY29tZSkKCmhvdXNlaG9sZF9pbmNvbWUkY291bnR5IDwtIHN0cl9yZXBsYWNlKGhvdXNlaG9sZF9pbmNvbWUkY291bnR5LCAiIENvdW50eSIsICIiKQoKcHJpbnQoaG91c2Vob2xkX2luY29tZSkKCmBgYAoKCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsIGluY2x1ZGU9RkFMU0UsIHBhZ2VkLnByaW50PUZBTFNFfQoKIyBNZXJnZSBkYXRhCnQgPC0gdF9hc3Nlc3MgJT4lIAogIGxlZnRfam9pbihob3VzZWhvbGRfaW5jb21lLCBieSA9ICJjb3VudHkiKSAlPiUgCiAgbGVmdF9qb2luKHRfdW5lbXBsb3llZCwgYnkgPSAiY291bnR5IikgJT4lIAogIGxlZnRfam9pbih0X3NwZW5kaW5nLCBieSA9ICJjb3VudHkiKQoKcHJpbnQodCkKYGBgCgojIyMgRGF0YQoKVGhlIGRhdGEgdXNlZCB0aGlzIHByb2plY3QgaW5jbHVkZXMgdW5lbXBsb3ltZW50IGRlbW9ncmFwaGljcywgY291bnR5IHJldmVudWVzIGFuZCBzcGVuZGluZywgYW5kIHByb2ZpY2llbmN5IHNjb3JlcyBmb3IgdmFyaW91cyBjb3VudGllcy4gVGhlc2UgZGF0YSBzZXRzIHdlcmUgcHJvdmlkZWQgYnkgUHJvZmVzc29yIEdhcnJldHQuIEFkZGl0aW9uYWxseSwgSSBpbmNvcnBvcmF0ZWQgbWVkaWFuIGZhbWlseSBpbmNvbWUgYW5kIHJlZ2lvbiBkYXRhIGZvciBlYWNoIGNvdW50eS4gCgpLZXkgVmFyaWFibGVzIEluY2x1ZGVkOgoKLSB0bG9jcmV2OiBsb2NhbCByZXZlbnVlIGZvciBlYWNoIGNvdW50eSBpbiBkb2xsYXJzCgotIGVucm9sbDogZW5yb2xsbWVudCBmb3Igc2Nob29scyBpbiBlYWNoIGNvdW50eQoKLSBtZWRfaW5jb21lOiBtZWRpYW4gZmFtaWx5IGluY29tZSBpbiBlYWNoIGNvdW50eQoKLSB1bmVtcGxveWVkOiB1bmVtcGxveW1lbnQgcmF0ZSBmb3IgZWFjaCBjb3VudHkKCi0gcHJvZmljaWVuY3k6IHByb2ZpY2llbmN5IHNjb3JlcyBpbiBlYWNoIGNvdW50eQoKCiMjIyBNZXRob2RzCgojIyMjIENvcnJlbGF0aW9ucwoKYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgcGFnZWQucHJpbnQ9RkFMU0V9CmxpYnJhcnkoZ2djb3JycGxvdCkKCm51bWVyaWNfZGF0YSA8LSB0ICU+JSAKICBzZWxlY3Qod2hlcmUoaXMubnVtZXJpYykpCmNvcnJfZGF0YSA8LSBudW1lcmljX2RhdGEgJT4lIAogIHNlbGVjdChwcm9maWNpZW5jeSwgbWVkX2luY29tZSwgdW5lbXBsb3llZCwgZW5yb2xsLCB0ZmVkcmV2LCB0c3RyZXYsIHRsb2NyZXYsIHRvdGFsZXhwKQpjb3JfbWF0cml4IDwtIGNvcihjb3JyX2RhdGEsIHVzZSA9ICJjb21wbGV0ZS5vYnMiKQoKZ2djb3JycGxvdChjb3IoY29ycl9kYXRhKSkKCmBgYApBYm92ZSBpcyBhIGNvcnJlbGF0aW9uIGdyYXBoIGZvciBtZSB0byBzZWUgdGhlIGRpZmZlcmVudCBjb3JyZWxhdGlvbnMgYmV0d2VlbiB0aGUgdmFyaWFibGVzIGluIG15IGRhdGEgc2V0LiAKCgoKIyMjIyBQQ0EKCmBgYHt1bmRlZmluZWQgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgcGFnZWQucHJpbnQ9RkFMU0V9CnBjYV9kYXRhIDwtIG51bWVyaWNfZGF0YSAlPiUgCiAgc2VsZWN0KHByb2ZpY2llbmN5LCBtZWRfaW5jb21lLCB1bmVtcGxveWVkLCB0bG9jcmV2LCBlbnJvbGwpCgpwY2FfcmVzdWx0cyA8LSBwcmNvbXAocGNhX2RhdGEsIAogICAgICAgICAgICAgICAgICAgICAgY2VudGVyID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICAgICBzY2FsZSA9IFRSVUUpCmJpcGxvdChwY2FfcmVzdWx0cykKCgpgYGAKVGhpcyBQQ0EgZ3JhcGggc2hvd3MgbWUgdGhhdCBzaW5jZSBwcm9maWNpZW5jeSBhbmQgdW5lbXBsb3ltZW50IHBvaW50IGluIG9wcG9zaXRlIGRpcmVjdGlvbnMsIHRoZXJlIGlzIGEgbmVnYXRpdmUgY29ycmVsYXRpb24gYmV0d2VlbiB0aGUgdHdvLiBQcm9maWNpZW5jeSBhbmQgYXZlcmFnZSBob3VzZWhvbGQgaW5jb21lIGhhdmUgYSB2ZXJ5IHN0cm9uZyBwb3NpdGl2ZSBjb3JyZWxhdGlvbiwgYXMgd2VsbCBhcyB0aGUgbnVtYmVyIGVucm9sbGVkIGFuZCB0aGUgbG9jYWwgcmV2ZW51ZS4gCgoKIyMjIyBEZWNpc2lvbiBUcmVlCgpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBwYWdlZC5wcmludD1GQUxTRX0KbGlicmFyeShycGFydC5wbG90KQpsaWJyYXJ5KHJwYXJ0KQoKdHJlZV9tb2RlbCA8LSBycGFydChwcm9maWNpZW5jeSB+IG1lZF9pbmNvbWUgKyB1bmVtcGxveWVkICsgZW5yb2xsICsgdGxvY3JldiwgCiAgICAgICAgICAgICAgICAgICAgZGF0YSA9IG51bWVyaWNfZGF0YSwgCiAgICAgICAgICAgICAgICAgICAgbWV0aG9kID0gImFub3ZhIiwgCiAgICAgICAgICAgICAgICAgICAgY29udHJvbCA9IHJwYXJ0LmNvbnRyb2wobWluc3BsaXQgPSAxMCwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWluYnVja2V0ID0gNSkpCgpycGFydC5wbG90KHRyZWVfbW9kZWwpCgpgYGAKQ291bnRpZXMgd2l0aCBoaWdoZXIgbG9jYWwgcmV2ZW51ZSB0ZW5kIHRvIGhhdmUgaGlnaGVyIHByZWRpY3RlZCBwcm9maWNpZW5jeSBzY29yZXMuIEluIGNvbnRyYXN0LCBjb3VudGllcyB3aXRoIGxvd2VyIGxvY2FsIHJldmVudWVzIHRlbmQgdG8gaGF2ZSBtb3JlIHNwbGl0cyBpbiB0aGUgZGVjaXNpb24gdHJlZSwgaW5kaWNhdGluZyB0aGUgcHJlc2VuY2Ugb2YgZGlzdGluY3Qgc3ViZ3JvdXAgYmVoYXZpb3JzLiBGb3IgZXhhbXBsZSwgZXZlbiB3aXRoaW4gdGhlIGdyb3VwIG9mIGNvdW50aWVzIHdpdGggbG93ZXIgbG9jYWwgcmV2ZW51ZXMsIHRob3NlIHdpdGggbG93ZXIgZW5yb2xsbWVudCAoYmVsb3cgb3IgZXF1YWwgdG8gMiwyNTUpIGFuZCBncmVhdGVyIGF2ZXJhZ2UgaW5jb21lIHRlbmQgdG8gaGF2ZSBhIGhpZ2ggcHJlZGljdGVkIHByb2ZpY2llbmN5IHNjb3JlLiAKCgoKIyMjIE5ldXJhbCBOZXR3b3JrIAoKYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgcGFnZWQucHJpbnQ9RkFMU0V9CmxpYnJhcnkobmV1cmFsbmV0KQoKCgoKYGBgCkkgaGF2ZW4ndCBiZWVuIGFibGUgdG8gc3RhcnQgdGhpcyB2aXN1YWxpemF0aW9uIHlldC4gCgoKCgojIyMgUHJlZGljdGlvbgoKYGBge3J9CgoKCgoKYGBgClN0aWxsIG5lZWQgdG8gZG8uCgoKIyMjIExpbWl0YXRpb25zCgpTdGlsbCBuZWVkIHRvIGRvLiAKCgojIyMgUmVzb3VyY2VzCgpTb3VyY2VzIEluY2x1ZGVkOiAKCi0gQ2hhdEdQVCBmb3IgY29kZSBlcnJvcnMKCi0gaHR0cHM6Ly9oZHB1bHNlLm5pbWhkLm5paC5nb3YvZGF0YS1wb3J0YWwvc29jaWFsL21hcD9zb2NpYWx0b3BpYz0wMzAmc29jaWFsdG9waWNfb3B0aW9ucz1zb2NpYWxfNiZkZW1vPTAwMDEwJmRlbW9fb3B0aW9ucz1pbmNvbWVfMyZyYWNlPTAwJnJhY2Vfb3B0aW9ucz1yYWNlXzcmc2V4PTAmc2V4X29wdGlvbnM9c2V4Ym90aF8xJmFnZT0wMDEmYWdlX29wdGlvbnM9YWdlYWxsXzEmc3RhdGVmaXBzPTU0JnN0YXRlZmlwc19vcHRpb25zPWFyZWFfc3RhdGVzCgotIGh0dHBzOi8vd3d3LmRyb3Bib3guY29tL3NjbC9mby9zMjl4d3dnMjFpcmNrejlnemp4MzkvQUMzVzhtMDJLTEFnSXREZmVqbW12clU/cmxrZXk9NGgyMjZpZG1kMG42OTZ6eWpjcmsya2VnYiZlPTEmZGw9MAoKCgoKCgoKCgoKCgoKCgoKCg==