# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347489
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0137597114  0.0184561881 -0.0141940216 -0.0036933181  0.0124082630
##   [6] -0.0096938673  0.0129921910 -0.0157579542  0.0215446630  0.0330482218
##  [11]  0.0538227378  0.0565348843  0.0247481630 -0.0044160784  0.0165039377
##  [16]  0.0004903188 -0.0012475234 -0.0126966582  0.0148275217 -0.0081031298
##  [21]  0.0130720852 -0.0090859594 -0.0189506191 -0.0335280733  0.0343502384
##  [26]  0.0124554801 -0.0072837795 -0.0039034785  0.0260967694 -0.0043862682
##  [31]  0.0379910071 -0.0151090244  0.0328611090  0.0208422849  0.0259130357
##  [36]  0.0268985638  0.0233290466  0.0211312341 -0.0247415599 -0.0320916273
##  [41]  0.0218658725 -0.0277197458 -0.0211587816  0.0107917704  0.0135010665
##  [46] -0.0085483500  0.0289213079 -0.0296513526 -0.0361250501  0.0182164719
##  [51] -0.0078892097 -0.0399888971  0.0345387811 -0.0181045091 -0.0033598011
##  [56]  0.0029951950 -0.0018259989 -0.0173389097 -0.0108147635  0.0132107473
##  [61] -0.0063912813  0.0302627893 -0.0180676665  0.0224744741  0.0236487777
##  [66]  0.0307402414 -0.0013832464 -0.0146111512 -0.0107085776 -0.0217930877
##  [71]  0.0247225869 -0.0145931848 -0.0002292242  0.0055135989  0.0058445198
##  [76]  0.0456476055  0.0123634586  0.0100008026  0.0481729120 -0.0065064155
##  [81] -0.0132047685 -0.0003414927  0.0037059966 -0.0016072034  0.0086500597
##  [86] -0.0226645000  0.0426697446 -0.0244003833 -0.0135031262  0.0454851642
##  [91]  0.0110795700  0.0395690430  0.0095957729 -0.0326612019  0.0593866577
##  [96]  0.0190868470  0.0334231025  0.0434022701 -0.0168487329  0.0421900476
## [101]  0.0046041599 -0.0224964695  0.0199499160  0.0294537132  0.0278902652
## [106] -0.0444501341  0.0320224911  0.0003219649  0.0025892894 -0.0170915914
## [111]  0.0372084581  0.0056939714  0.0140771715  0.0003124735  0.0117621659
## [116]  0.0324760016  0.0262704124 -0.0051483597 -0.0108240714 -0.0383470589
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.01 
##  3   1.02 
##  4   0.986
##  5   0.996
##  6   1.01 
##  7   0.990
##  8   1.01 
##  9   0.984
## 10   1.02 
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.01
##  3   1.03
##  4   1.02
##  5   1.01
##  6   1.03
##  7   1.02
##  8   1.03
##  9   1.01
## 10   1.04
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 7.543212

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {

    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    simulated_growth
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   343.
## 2   350.
## 3   355.
## 4   360.
## 5   359.
## 6   359.
dump(list = c("simulate_accumulation"), 
     file = "../00_scripts/simulate_accumulation")

7 Running multiple simulations

# Create a vector of 1s as a starting point 
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# For reproducible research
set.seed(1234)

monte_carlo_sim_51 <-starts %>%
    
    # Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                        N = 120, 
                                        mean_return = mean_port_return, 
                                        sd_return = stddev_port_return)) %>%

    # Add column month 
    mutate(month = 1:nrow(.)) %>% 
    select(month, everything()) %>%
    
    # Rearrange column names 
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form 
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Find quantiles 
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Similating Growth of $1 Over 120 Months")

Line plot with max, median, and min

# Step 1 Summarize data into max, median, and min of last value 
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max = max(growth), 
              median = median(growth), 
              min = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2 Plot
monte_carlo_sim_51 %>%
    
    # Filter for max, median, and min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    #Plot 
     ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "Similating Growth of $1 Over 120 Months", 
         subtitle = "Max, Median, and Minimun Simulation")