# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899134
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0039167337  0.0152799998 -0.0473314630  0.0716699970  0.0052219677
##   [6] -0.0251875575 -0.0510532032  0.0245705616 -0.0233689170 -0.0326671965
##  [11]  0.0259470417 -0.0011522722  0.0363629263 -0.0215825435 -0.0088422006
##  [16] -0.0273937587  0.0228322976 -0.0419046694  0.0164107806 -0.0031307406
##  [21] -0.0024306333 -0.0346436150  0.0097713341 -0.0222829000  0.0116501893
##  [26] -0.0126562244  0.0085557960 -0.0066025100  0.0116449593  0.0181394317
##  [31] -0.0152831345 -0.0144656194  0.0260247610 -0.0325762295  0.0375498170
##  [36] -0.0501897956  0.0117077203  0.0256731582  0.0121526795 -0.0038640863
##  [41]  0.0237493684  0.0454070068  0.0121794966 -0.0074552256  0.0086673130
##  [46]  0.0187234034 -0.0004201395  0.0222385695  0.0452880616  0.0117684094
##  [51] -0.0061486654 -0.0093419384  0.0205938249  0.0453265844 -0.0328245410
##  [56] -0.0244497974  0.0314070124  0.0258534772 -0.0003902100  0.0040814764
##  [61]  0.0079316444 -0.0182450535 -0.0158781315 -0.0361917850 -0.0244904266
##  [66] -0.0433729297 -0.0234328974  0.0321838758  0.0183256054  0.0182928590
##  [71]  0.0431681844  0.0489987831  0.0077516933 -0.0175699697  0.0121395006
##  [76] -0.0126114193  0.0216217442  0.0050135003 -0.0003325347  0.0071162110
##  [81]  0.0338984985  0.0730272201 -0.0048989184  0.0222190485 -0.0093835459
##  [86]  0.0226067872  0.0318119455 -0.0123931403 -0.0133357132  0.0393334476
##  [91] -0.0114292871  0.0372978697  0.0172340008 -0.0100339659 -0.0175613116
##  [96] -0.0097400606  0.0137387669 -0.0096011806  0.0405620546  0.0030917413
## [101]  0.0042371090 -0.0285517937  0.0110049778 -0.0496999358 -0.0018095183
## [106] -0.0282906305 -0.0068977718  0.0459560992 -0.0006753488  0.0844580517
## [111]  0.0260640687 -0.0029106438  0.0298843413 -0.0138746624  0.0086558472
## [116]  0.0149629441 -0.0171687000 -0.0124443511 -0.0059885644  0.0386018192
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.00 
##  3   1.02 
##  4   0.953
##  5   1.07 
##  6   1.01 
##  7   0.975
##  8   0.949
##  9   1.02 
## 10   0.977
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  1.00 
##  3  1.02 
##  4  0.971
##  5  1.04 
##  6  1.05 
##  7  1.02 
##  8  0.968
##  9  0.991
## 10  0.968
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 4.823239

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    

# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))


# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

return(simulated_growth)    
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   347.
## 2   348.
## 3   348.
## 4   353.
## 5   353.
## 6   360.
dump(list = c("simulate_accumulation"),
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
#Simulate
#For Reproducible Research
set.seed(1234)

monte_carlo_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = .,
            .f = ~simulate_accumulation(initial_value = .x,
                                        N = 120, 
                                        mean_return = mean_port_return, 
                                        sd_return = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    #Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
    
monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Find quantiles
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "simulating growht of $1 over 120 months")

Line plot with max, median, and min

# Step 1 summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    
    summarise(max = max(growth),median = median(growth), min = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
#Step 2 plot
monte_carlo_sim_51 %>%
    
    # Filter for max,median, and min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
               last(growth) == sim_summary$median |
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() +
    
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "simulating growht of $1 over 120 months",
         subtitle = "Maximum, Median, and Minimum Simulation")