options(repos = c(CRAN = "https://cloud.r-project.org"))
install.packages("tidyverse")
## Installing package into 'C:/Users/H P/AppData/Local/R/win-library/4.4'
## (as 'lib' is unspecified)
## package 'tidyverse' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\H P\AppData\Local\Temp\RtmpEtPOJ0\downloaded_packages
install.packages("broom.helpers")
## Installing package into 'C:/Users/H P/AppData/Local/R/win-library/4.4'
## (as 'lib' is unspecified)
## package 'broom.helpers' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\H P\AppData\Local\Temp\RtmpEtPOJ0\downloaded_packages
install.packages("readxl")
## Installing package into 'C:/Users/H P/AppData/Local/R/win-library/4.4'
## (as 'lib' is unspecified)
## package 'readxl' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'readxl'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying
## C:\Users\H P\AppData\Local\R\win-library\4.4\00LOCK\readxl\libs\x64\readxl.dll
## to C:\Users\H P\AppData\Local\R\win-library\4.4\readxl\libs\x64\readxl.dll:
## Permission denied
## Warning: restored 'readxl'
##
## The downloaded binary packages are in
## C:\Users\H P\AppData\Local\Temp\RtmpEtPOJ0\downloaded_packages
install.packages("skimr")
## Installing package into 'C:/Users/H P/AppData/Local/R/win-library/4.4'
## (as 'lib' is unspecified)
## package 'skimr' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\H P\AppData\Local\Temp\RtmpEtPOJ0\downloaded_packages
install.packages("gtsummary")
## Installing package into 'C:/Users/H P/AppData/Local/R/win-library/4.4'
## (as 'lib' is unspecified)
## package 'gtsummary' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\H P\AppData\Local\Temp\RtmpEtPOJ0\downloaded_packages
install.packages("janitor")
## Installing package into 'C:/Users/H P/AppData/Local/R/win-library/4.4'
## (as 'lib' is unspecified)
## package 'janitor' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\H P\AppData\Local\Temp\RtmpEtPOJ0\downloaded_packages
install.packages("broom")
## Installing package into 'C:/Users/H P/AppData/Local/R/win-library/4.4'
## (as 'lib' is unspecified)
## package 'broom' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\H P\AppData\Local\Temp\RtmpEtPOJ0\downloaded_packages
install.packages("rsq")
## Installing package into 'C:/Users/H P/AppData/Local/R/win-library/4.4'
## (as 'lib' is unspecified)
## package 'rsq' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\H P\AppData\Local\Temp\RtmpEtPOJ0\downloaded_packages
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.2
## Warning: package 'dplyr' was built under R version 4.4.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
## Warning: package 'readxl' was built under R version 4.4.2
library(broom.helpers)
## Warning: package 'broom.helpers' was built under R version 4.4.2
library(skimr)
## Warning: package 'skimr' was built under R version 4.4.2
library(gtsummary)
## Warning: package 'gtsummary' was built under R version 4.4.2
##
## Attaching package: 'gtsummary'
##
## The following objects are masked from 'package:broom.helpers':
##
## all_categorical, all_continuous, all_contrasts, all_dichotomous,
## all_interaction, all_intercepts
library(janitor)
## Warning: package 'janitor' was built under R version 4.4.2
##
## Attaching package: 'janitor'
##
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
library(broom)
## Warning: package 'broom' was built under R version 4.4.2
library(rsq)
## Warning: package 'rsq' was built under R version 4.4.2
DATA <- read_excel("TRYDATANIMLR.xlsx")
Data1 <- DATA %>% clean_names()
glimpse(Data1)
## Rows: 299
## Columns: 49
## $ id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11…
## $ current_hospital_posting <chr> "HSIP", "HSIP", "HSIP", "HSIP", "…
## $ age_years <dbl> 27, 26, 25, 26, 27, 26, 27, 29, 3…
## $ gender <chr> "Female", "Female", "Female", "Fe…
## $ ethnicity <chr> "Malay", "Malay", "Malay", "Malay…
## $ religion <chr> "Islam", "Islam", "Islam", "Islam…
## $ marital_status <chr> "Single", "Single", "Single", "Si…
## $ chronic_medical_illness <chr> "No known medical illness", "No k…
## $ duration_of_employment <dbl> 10, 9, 9, 9, 10, 8, 10, 23, 9, 9,…
## $ exposure_to_psychiatry_posting <chr> "No", "No", "No", "No", "No", "No…
## $ previous_experience_of_being_bullied <chr> "No", "No", "Yes", "No", "Yes", "…
## $ family_members_spouse <chr> "No", "No", "Yes", "No", "No", "N…
## $ peers_friends <chr> "No", "No", "Yes", "No", "Yes", "…
## $ qd1 <dbl> 4, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, …
## $ qd2 <dbl> 4, 4, 2, 3, 3, 3, 4, 3, 3, 3, 3, …
## $ qd3 <dbl> 4, 4, 3, 4, 3, 4, 4, 4, 4, 3, 3, …
## $ qd4 <dbl> 4, 4, 4, 3, 3, 4, 3, 4, 4, 4, 3, …
## $ qd5 <dbl> 4, 3, 4, 2, 3, 3, 3, 3, 4, 4, 3, …
## $ qd6 <dbl> 4, 4, 3, 3, 3, 4, 3, 2, 3, 3, 3, …
## $ qd7 <dbl> 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, …
## $ qd8 <dbl> 4, 4, 3, 4, 3, 3, 3, 3, 4, 2, 4, …
## $ si9 <dbl> 2, 3, 4, 2, 3, 3, 3, 4, 3, 3, 2, …
## $ si10 <dbl> 2, 1, 3, 2, 3, 2, 2, 3, 3, 1, 1, …
## $ si11 <dbl> 3, 4, 4, 3, 2, 3, 3, 1, 4, 2, 2, …
## $ si12 <dbl> 1, 2, 3, 3, 2, 3, 2, 2, 3, 2, 3, …
## $ rc13 <dbl> 2, 4, 3, 4, 3, 3, 3, 2, 3, 3, 3, …
## $ rc14 <dbl> 4, 4, 4, 3, 3, 4, 3, 3, 3, 3, 3, …
## $ t15 <dbl> 2, 4, 4, 3, 3, 3, 3, 2, 3, 1, 3, …
## $ t16 <dbl> 3, 5, 3, 4, 4, 4, 4, 3, 4, 2, 4, …
## $ ph17 <dbl> 3, 2, 3, 3, 4, 4, 2, 4, 4, 2, 4, …
## $ ph18 <dbl> 2, 4, 3, 4, 4, 2, 2, 2, 4, 1, 4, …
## $ ph19 <dbl> 4, 5, 3, 4, 4, 4, 4, 3, 4, 2, 4, …
## $ a20 <dbl> 4, 1, 3, 3, 4, 1, 3, 3, 2, 2, 4, …
## $ a21 <dbl> 3, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, …
## $ a22 <dbl> 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, …
## $ a23 <dbl> 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 2, …
## $ a24 <dbl> 2, 2, 1, 4, 3, 1, 3, 1, 1, 3, 2, …
## $ a25 <dbl> 2, 2, 1, 4, 3, 3, 3, 3, 1, 3, 3, …
## $ a26 <dbl> 2, 2, 3, 2, 3, 2, 2, 2, 1, 1, 2, …
## $ a27 <dbl> 2, 2, 1, 2, 3, 2, 3, 3, 1, 1, 2, …
## $ a28 <dbl> 2, 2, 1, 2, 3, 2, 2, 2, 1, 2, 2, …
## $ a29 <dbl> 3, 3, 4, 4, 4, 3, 3, 3, 5, 2, 3, …
## $ a30 <dbl> 3, 3, 5, 3, 4, 3, 3, 3, 5, 4, 3, …
## $ a31 <dbl> 3, 4, 5, 3, 4, 3, 3, 3, 5, 4, 3, …
## $ a32 <dbl> 3, 3, 4, 3, 4, 3, 2, 3, 5, 3, 3, …
## $ a33 <dbl> 3, 2, 4, 3, 4, 3, 3, 3, 4, 2, 3, …
## $ a34 <dbl> 2, 1, 3, 3, 4, 3, 1, 3, 3, 2, 3, …
## $ a35 <dbl> 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, …
## $ literacy_score <dbl> 102, 105, 102, 107, 111, 98, 97, …
Data1 %>%
mutate(across(where(is.character), as.factor))
## # A tibble: 299 × 49
## id current_hospital_posting age_years gender ethnicity religion
## <dbl> <fct> <dbl> <fct> <fct> <fct>
## 1 1 HSIP 27 Female Malay Islam
## 2 2 HSIP 26 Female Malay Islam
## 3 3 HSIP 25 Female Malay Islam
## 4 4 HSIP 26 Female Malay Islam
## 5 5 HSIP 27 Female Malay Islam
## 6 6 HSIP 26 Female Malay Islam
## 7 7 HSIP 27 Female Malay Islam
## 8 8 HSIP 29 Female Malay Islam
## 9 9 HSIP 31 Female Malay Islam
## 10 10 HSIP 28 Female Malay Islam
## # ℹ 289 more rows
## # ℹ 43 more variables: marital_status <fct>, chronic_medical_illness <fct>,
## # duration_of_employment <dbl>, exposure_to_psychiatry_posting <fct>,
## # previous_experience_of_being_bullied <fct>, family_members_spouse <fct>,
## # peers_friends <fct>, qd1 <dbl>, qd2 <dbl>, qd3 <dbl>, qd4 <dbl>, qd5 <dbl>,
## # qd6 <dbl>, qd7 <dbl>, qd8 <dbl>, si9 <dbl>, si10 <dbl>, si11 <dbl>,
## # si12 <dbl>, rc13 <dbl>, rc14 <dbl>, t15 <dbl>, t16 <dbl>, ph17 <dbl>, …
Data1 %>%
select(duration_of_employment, current_hospital_posting, previous_experience_of_being_bullied, family_members_spouse, peers_friends, literacy_score)
## # A tibble: 299 × 6
## duration_of_employment current_hospital_posting previous_experience_of_bein…¹
## <dbl> <chr> <chr>
## 1 10 HSIP No
## 2 9 HSIP No
## 3 9 HSIP Yes
## 4 9 HSIP No
## 5 10 HSIP Yes
## 6 8 HSIP Yes
## 7 10 HSIP No
## 8 23 HSIP No
## 9 9 HSIP No
## 10 9 HSIP No
## # ℹ 289 more rows
## # ℹ abbreviated name: ¹​previous_experience_of_being_bullied
## # ℹ 3 more variables: family_members_spouse <chr>, peers_friends <chr>,
## # literacy_score <dbl>
str(Data1)
## tibble [299 × 49] (S3: tbl_df/tbl/data.frame)
## $ id : num [1:299] 1 2 3 4 5 6 7 8 9 10 ...
## $ current_hospital_posting : chr [1:299] "HSIP" "HSIP" "HSIP" "HSIP" ...
## $ age_years : num [1:299] 27 26 25 26 27 26 27 29 31 28 ...
## $ gender : chr [1:299] "Female" "Female" "Female" "Female" ...
## $ ethnicity : chr [1:299] "Malay" "Malay" "Malay" "Malay" ...
## $ religion : chr [1:299] "Islam" "Islam" "Islam" "Islam" ...
## $ marital_status : chr [1:299] "Single" "Single" "Single" "Single" ...
## $ chronic_medical_illness : chr [1:299] "No known medical illness" "No known medical illness" "No known medical illness" "No known medical illness" ...
## $ duration_of_employment : num [1:299] 10 9 9 9 10 8 10 23 9 9 ...
## $ exposure_to_psychiatry_posting : chr [1:299] "No" "No" "No" "No" ...
## $ previous_experience_of_being_bullied: chr [1:299] "No" "No" "Yes" "No" ...
## $ family_members_spouse : chr [1:299] "No" "No" "Yes" "No" ...
## $ peers_friends : chr [1:299] "No" "No" "Yes" "No" ...
## $ qd1 : num [1:299] 4 3 2 3 3 3 3 3 3 2 ...
## $ qd2 : num [1:299] 4 4 2 3 3 3 4 3 3 3 ...
## $ qd3 : num [1:299] 4 4 3 4 3 4 4 4 4 3 ...
## $ qd4 : num [1:299] 4 4 4 3 3 4 3 4 4 4 ...
## $ qd5 : num [1:299] 4 3 4 2 3 3 3 3 4 4 ...
## $ qd6 : num [1:299] 4 4 3 3 3 4 3 2 3 3 ...
## $ qd7 : num [1:299] 4 4 3 4 3 4 4 4 4 4 ...
## $ qd8 : num [1:299] 4 4 3 4 3 3 3 3 4 2 ...
## $ si9 : num [1:299] 2 3 4 2 3 3 3 4 3 3 ...
## $ si10 : num [1:299] 2 1 3 2 3 2 2 3 3 1 ...
## $ si11 : num [1:299] 3 4 4 3 2 3 3 1 4 2 ...
## $ si12 : num [1:299] 1 2 3 3 2 3 2 2 3 2 ...
## $ rc13 : num [1:299] 2 4 3 4 3 3 3 2 3 3 ...
## $ rc14 : num [1:299] 4 4 4 3 3 4 3 3 3 3 ...
## $ t15 : num [1:299] 2 4 4 3 3 3 3 2 3 1 ...
## $ t16 : num [1:299] 3 5 3 4 4 4 4 3 4 2 ...
## $ ph17 : num [1:299] 3 2 3 3 4 4 2 4 4 2 ...
## $ ph18 : num [1:299] 2 4 3 4 4 2 2 2 4 1 ...
## $ ph19 : num [1:299] 4 5 3 4 4 4 4 3 4 2 ...
## $ a20 : num [1:299] 4 1 3 3 4 1 3 3 2 2 ...
## $ a21 : num [1:299] 3 2 1 2 1 1 1 3 1 1 ...
## $ a22 : num [1:299] 2 1 1 2 1 1 1 2 1 1 ...
## $ a23 : num [1:299] 3 3 1 3 3 1 3 3 1 3 ...
## $ a24 : num [1:299] 2 2 1 4 3 1 3 1 1 3 ...
## $ a25 : num [1:299] 2 2 1 4 3 3 3 3 1 3 ...
## $ a26 : num [1:299] 2 2 3 2 3 2 2 2 1 1 ...
## $ a27 : num [1:299] 2 2 1 2 3 2 3 3 1 1 ...
## $ a28 : num [1:299] 2 2 1 2 3 2 2 2 1 2 ...
## $ a29 : num [1:299] 3 3 4 4 4 3 3 3 5 2 ...
## $ a30 : num [1:299] 3 3 5 3 4 3 3 3 5 4 ...
## $ a31 : num [1:299] 3 4 5 3 4 3 3 3 5 4 ...
## $ a32 : num [1:299] 3 3 4 3 4 3 2 3 5 3 ...
## $ a33 : num [1:299] 3 2 4 3 4 3 3 3 4 2 ...
## $ a34 : num [1:299] 2 1 3 3 4 3 1 3 3 2 ...
## $ a35 : num [1:299] 3 4 3 3 4 3 3 3 4 3 ...
## $ literacy_score : num [1:299] 102 105 102 107 111 98 97 98 108 84 ...
install.packages("GGally")
## Installing package into 'C:/Users/H P/AppData/Local/R/win-library/4.4'
## (as 'lib' is unspecified)
## package 'GGally' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\H P\AppData\Local\Temp\RtmpEtPOJ0\downloaded_packages
library(GGally)
## Warning: package 'GGally' was built under R version 4.4.2
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
Data1 %>%
select(duration_of_employment, current_hospital_posting, previous_experience_of_being_bullied, family_members_spouse, peers_friends, literacy_score) %>%
ggpairs()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

slrdataA <- lm(literacy_score ~ family_members_spouse, data = Data1)
summary(slrdataA)
##
## Call:
## lm(formula = literacy_score ~ family_members_spouse, data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.724 -4.724 -0.724 4.276 51.097
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 98.7239 0.4921 200.601 < 2e-16 ***
## family_members_spouseYes 5.1793 1.5284 3.389 0.000797 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.057 on 297 degrees of freedom
## Multiple R-squared: 0.03722, Adjusted R-squared: 0.03398
## F-statistic: 11.48 on 1 and 297 DF, p-value: 0.0007971
tidy(slrdataA, conf.int= TRUE)
## # A tibble: 2 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 98.7 0.492 201. 4.02e-319 97.8 99.7
## 2 family_members_spou… 5.18 1.53 3.39 7.97e- 4 2.17 8.19
tbl_regression(slrdataA)
| Characteristic |
Beta |
95% CI |
p-value |
| family_members_spouse |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
5.2 |
2.2, 8.2 |
<0.001 |
slrdataB <- lm(literacy_score ~ peers_friends, data = Data1)
summary(slrdataB)
##
## Call:
## lm(formula = literacy_score ~ peers_friends, data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.632 -4.793 -0.632 4.207 54.207
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 98.6321 0.5599 176.173 <2e-16 ***
## peers_friendsYes 2.1610 1.0379 2.082 0.0382 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.152 on 297 degrees of freedom
## Multiple R-squared: 0.01439, Adjusted R-squared: 0.01107
## F-statistic: 4.335 on 1 and 297 DF, p-value: 0.03819
tidy(slrdataB, conf.int= TRUE)
## # A tibble: 2 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 98.6 0.560 176. 1.63e-302 97.5 99.7
## 2 peers_friendsYes 2.16 1.04 2.08 3.82e- 2 0.118 4.20
tbl_regression(slrdataB)
| Characteristic |
Beta |
95% CI |
p-value |
| peers_friends |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
2.2 |
0.12, 4.2 |
0.038 |
slrdataC <- lm(literacy_score ~ current_hospital_posting, data = Data1)
summary(slrdataC)
##
## Call:
## lm(formula = literacy_score ~ current_hospital_posting, data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.469 -4.972 -0.469 4.531 56.028
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 98.4687 0.8342 118.043 <2e-16 ***
## current_hospital_postingHSIP 2.8646 1.3667 2.096 0.0369 *
## current_hospital_postingHTM 0.5049 1.5665 0.322 0.7474
## current_hospital_postingHUSM 0.5035 1.1465 0.439 0.6609
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.173 on 295 degrees of freedom
## Multiple R-squared: 0.01584, Adjusted R-squared: 0.005832
## F-statistic: 1.583 on 3 and 295 DF, p-value: 0.1936
tidy(slrdataC, conf.int= TRUE)
## # A tibble: 4 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 98.5 0.834 118. 2.38e-250 96.8 100.
## 2 current_hospital_po… 2.86 1.37 2.10 3.69e- 2 0.175 5.55
## 3 current_hospital_po… 0.505 1.57 0.322 7.47e- 1 -2.58 3.59
## 4 current_hospital_po… 0.503 1.15 0.439 6.61e- 1 -1.75 2.76
tbl_regression(slrdataC)
| Characteristic |
Beta |
95% CI |
p-value |
| current_hospital_posting |
|
|
|
| Â Â Â Â HRPZ |
— |
— |
|
| Â Â Â Â HSIP |
2.9 |
0.17, 5.6 |
0.037 |
| Â Â Â Â HTM |
0.50 |
-2.6, 3.6 |
0.7 |
| Â Â Â Â HUSM |
0.50 |
-1.8, 2.8 |
0.7 |
slrdata1 <- lm(literacy_score ~ duration_of_employment, data = Data1)
summary(slrdata1)
##
## Call:
## lm(formula = literacy_score ~ duration_of_employment, data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.156 -4.983 -0.654 4.761 54.191
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 101.47225 1.16035 87.450 <2e-16 ***
## duration_of_employment -0.16580 0.07949 -2.086 0.0379 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.151 on 297 degrees of freedom
## Multiple R-squared: 0.01444, Adjusted R-squared: 0.01112
## F-statistic: 4.35 on 1 and 297 DF, p-value: 0.03786
tidy(slrdata1, conf.int= TRUE)
## # A tibble: 2 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 101. 1.16 87.4 5.23e-214 99.2 104.
## 2 duration_of_employm… -0.166 0.0795 -2.09 3.79e- 2 -0.322 -0.00936
tbl_regression(slrdata1)
| Characteristic |
Beta |
95% CI |
p-value |
| duration_of_employment |
-0.17 |
-0.32, -0.01 |
0.038 |
slrdata2 <- lm(literacy_score ~ exposure_to_psychiatry_posting, data = Data1)
summary(slrdata2)
##
## Call:
## lm(formula = literacy_score ~ exposure_to_psychiatry_posting,
## data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.277 -5.277 -1.277 4.723 55.723
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 99.2770 0.4772 208.058 <2e-16 ***
## exposure_to_psychiatry_postingYes -1.6104 4.7636 -0.338 0.736
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.209 on 297 degrees of freedom
## Multiple R-squared: 0.0003846, Adjusted R-squared: -0.002981
## F-statistic: 0.1143 on 1 and 297 DF, p-value: 0.7356
tidy(slrdata2, conf.int= TRUE)
## # A tibble: 2 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 99.3 0.477 208. 9.88e-324 98.3 100.
## 2 exposure_to_psychia… -1.61 4.76 -0.338 7.36e- 1 -11.0 7.76
tbl_regression(slrdata2)
| Characteristic |
Beta |
95% CI |
p-value |
| exposure_to_psychiatry_posting |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
-1.6 |
-11, 7.8 |
0.7 |
slrdata3 <- lm(literacy_score ~ previous_experience_of_being_bullied, data = Data1)
summary(slrdata3)
##
## Call:
## lm(formula = literacy_score ~ previous_experience_of_being_bullied,
## data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.879 -4.879 -0.553 4.447 54.121
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 98.5529 0.5644 174.604 <2e-16
## previous_experience_of_being_bulliedYes 2.3262 1.0231 2.274 0.0237
##
## (Intercept) ***
## previous_experience_of_being_bulliedYes *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.14 on 297 degrees of freedom
## Multiple R-squared: 0.01711, Adjusted R-squared: 0.0138
## F-statistic: 5.169 on 1 and 297 DF, p-value: 0.0237
slrdata3 <- lm(literacy_score ~ previous_experience_of_being_bullied, data = Data1)
summary(slrdata3)
##
## Call:
## lm(formula = literacy_score ~ previous_experience_of_being_bullied,
## data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.879 -4.879 -0.553 4.447 54.121
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 98.5529 0.5644 174.604 <2e-16
## previous_experience_of_being_bulliedYes 2.3262 1.0231 2.274 0.0237
##
## (Intercept) ***
## previous_experience_of_being_bulliedYes *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.14 on 297 degrees of freedom
## Multiple R-squared: 0.01711, Adjusted R-squared: 0.0138
## F-statistic: 5.169 on 1 and 297 DF, p-value: 0.0237
tidy(slrdata3, conf.int= TRUE)
## # A tibble: 2 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 98.6 0.564 175. 2.27e-301 97.4 99.7
## 2 previous_experience… 2.33 1.02 2.27 2.37e- 2 0.313 4.34
tbl_regression(slrdata3)
| Characteristic |
Beta |
95% CI |
p-value |
| previous_experience_of_being_bullied |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
2.3 |
0.31, 4.3 |
0.024 |
install.packages("broom")
## Warning: package 'broom' is in use and will not be installed
library(broom)
tidy(slrdata1, conf.int= TRUE)
## # A tibble: 2 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 101. 1.16 87.4 5.23e-214 99.2 104.
## 2 duration_of_employm… -0.166 0.0795 -2.09 3.79e- 2 -0.322 -0.00936
tbl_regression(slrdata1)
| Characteristic |
Beta |
95% CI |
p-value |
| duration_of_employment |
-0.17 |
-0.32, -0.01 |
0.038 |
tidy(slrdata2, conf.int= TRUE)
## # A tibble: 2 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 99.3 0.477 208. 9.88e-324 98.3 100.
## 2 exposure_to_psychia… -1.61 4.76 -0.338 7.36e- 1 -11.0 7.76
tidy(slrdata3, conf.int= TRUE)
## # A tibble: 2 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 98.6 0.564 175. 2.27e-301 97.4 99.7
## 2 previous_experience… 2.33 1.02 2.27 2.37e- 2 0.313 4.34
install.packages("rsq")
## Warning: package 'rsq' is in use and will not be installed
library(rsq)
rsq(slrdata1)
## [1] 0.01443512
rsq(slrdata2)
## [1] 0.0003846313
rsq(slrdata3)
## [1] 0.01710795
rsq(slrdataA)
## [1] 0.03722474
rsq(slrdataB)
## [1] 0.01438671
rsq(slrdataC)
## [1] 0.01584071
mlrdata1 <- lm(literacy_score ~ duration_of_employment + current_hospital_posting + previous_experience_of_being_bullied + family_members_spouse + peers_friends, data = Data1)
summary(mlrdata1)
##
## Call:
## lm(formula = literacy_score ~ duration_of_employment + current_hospital_posting +
## previous_experience_of_being_bullied + family_members_spouse +
## peers_friends, data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.136 -4.873 -0.020 4.363 48.467
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 98.72898 1.47587 66.895 < 2e-16
## duration_of_employment -0.13017 0.07935 -1.641 0.10197
## current_hospital_postingHSIP 2.57927 1.34851 1.913 0.05677
## current_hospital_postingHTM 0.87073 1.54378 0.564 0.57317
## current_hospital_postingHUSM 0.74146 1.12609 0.658 0.51078
## previous_experience_of_being_bulliedYes 2.01095 1.01586 1.980 0.04870
## family_members_spouseYes 4.46020 1.54353 2.890 0.00415
## peers_friendsYes 1.11174 1.05039 1.058 0.29075
##
## (Intercept) ***
## duration_of_employment
## current_hospital_postingHSIP .
## current_hospital_postingHTM
## current_hospital_postingHUSM
## previous_experience_of_being_bulliedYes *
## family_members_spouseYes **
## peers_friendsYes
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.96 on 291 degrees of freedom
## Multiple R-squared: 0.07917, Adjusted R-squared: 0.05702
## F-statistic: 3.574 on 7 and 291 DF, p-value: 0.001048
rsq(mlrdata1)
## [1] 0.07916771
mlrdata2 <- lm(literacy_score ~ duration_of_employment + previous_experience_of_being_bullied + family_members_spouse + peers_friends, data = Data1)
summary(mlrdata2)
##
## Call:
## lm(formula = literacy_score ~ duration_of_employment + previous_experience_of_being_bullied +
## family_members_spouse + peers_friends, data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.736 -4.890 -0.318 4.679 48.115
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 99.78907 1.25818 79.312 <2e-16
## duration_of_employment -0.14540 0.07843 -1.854 0.0648
## previous_experience_of_being_bulliedYes 1.85483 1.00896 1.838 0.0670
## family_members_spouseYes 4.52538 1.54195 2.935 0.0036
## peers_friendsYes 1.29702 1.03887 1.248 0.2128
##
## (Intercept) ***
## duration_of_employment .
## previous_experience_of_being_bulliedYes .
## family_members_spouseYes **
## peers_friendsYes
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.97 on 294 degrees of freedom
## Multiple R-squared: 0.06746, Adjusted R-squared: 0.05477
## F-statistic: 5.317 on 4 and 294 DF, p-value: 0.0003795
rsq(mlrdata2)
## [1] 0.06745943
mlrdata3 <- lm(literacy_score ~ duration_of_employment + previous_experience_of_being_bullied + family_members_spouse, data = Data1)
summary(mlrdata3)
##
## Call:
## lm(formula = literacy_score ~ duration_of_employment + previous_experience_of_being_bullied +
## family_members_spouse, data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.026 -4.945 -0.497 4.605 48.603
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 100.28876 1.19395 83.997 < 2e-16
## duration_of_employment -0.15801 0.07785 -2.030 0.04329
## previous_experience_of_being_bulliedYes 1.89782 1.00933 1.880 0.06105
## family_members_spouseYes 4.84211 1.52238 3.181 0.00163
##
## (Intercept) ***
## duration_of_employment *
## previous_experience_of_being_bulliedYes .
## family_members_spouseYes **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.977 on 295 degrees of freedom
## Multiple R-squared: 0.06252, Adjusted R-squared: 0.05298
## F-statistic: 6.557 on 3 and 295 DF, p-value: 0.0002637
rsq(mlrdata3)
## [1] 0.06251529
mlrdata4 <- lm(literacy_score ~ duration_of_employment + family_members_spouse, data = Data1)
summary(mlrdata4)
##
## Call:
## lm(formula = literacy_score ~ duration_of_employment + family_members_spouse,
## data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.637 -4.773 -0.637 4.691 49.593
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 100.90876 1.15242 87.562 < 2e-16 ***
## duration_of_employment -0.16361 0.07813 -2.094 0.037103 *
## family_members_spouseYes 5.15302 1.51984 3.391 0.000792 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.011 on 296 degrees of freedom
## Multiple R-squared: 0.05128, Adjusted R-squared: 0.04487
## F-statistic: 8 on 2 and 296 DF, p-value: 0.0004135
rsq(mlrdata4)
## [1] 0.05127984
# forward
mlr_data4_stepforward <- step(mlrdata4, scope = ~ duration_of_employment + family_members_spouse, direction = "forward")
## Start: AIC=1247.32
## literacy_score ~ duration_of_employment + family_members_spouse
mlr_data3_stepforward <- step(mlrdata3, scope = ~ duration_of_employment + previous_experience_of_being_bullied + family_members_spouse, direction = "forward")
## Start: AIC=1245.76
## literacy_score ~ duration_of_employment + previous_experience_of_being_bullied +
## family_members_spouse
# forward
mlr_data2_stepforward <- step(mlrdata2, scope = ~ duration_of_employment + previous_experience_of_being_bullied + family_members_spouse + peers_friends, direction = "forward")
## Start: AIC=1246.18
## literacy_score ~ duration_of_employment + previous_experience_of_being_bullied +
## family_members_spouse + peers_friends
# Backward
mlr_data4_stepbackward <- step(mlrdata4, direction = "backward")
## Start: AIC=1247.32
## literacy_score ~ duration_of_employment + family_members_spouse
##
## Df Sum of Sq RSS AIC
## <none> 18997 1247.3
## - duration_of_employment 1 281.43 19278 1249.7
## - family_members_spouse 1 737.77 19735 1256.7
# Both
mlr_data4_stepwise <- step(mlrdata4, direction = "both")
## Start: AIC=1247.32
## literacy_score ~ duration_of_employment + family_members_spouse
##
## Df Sum of Sq RSS AIC
## <none> 18997 1247.3
## - duration_of_employment 1 281.43 19278 1249.7
## - family_members_spouse 1 737.77 19735 1256.7
prelim_mlr_data1 <- lm(literacy_score ~ duration_of_employment + family_members_spouse, data = Data1)
summary(prelim_mlr_data1, conf.int = TRUE)
##
## Call:
## lm(formula = literacy_score ~ duration_of_employment + family_members_spouse,
## data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.637 -4.773 -0.637 4.691 49.593
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 100.90876 1.15242 87.562 < 2e-16 ***
## duration_of_employment -0.16361 0.07813 -2.094 0.037103 *
## family_members_spouseYes 5.15302 1.51984 3.391 0.000792 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.011 on 296 degrees of freedom
## Multiple R-squared: 0.05128, Adjusted R-squared: 0.04487
## F-statistic: 8 on 2 and 296 DF, p-value: 0.0004135
tbl_regression(prelim_mlr_data1)
| Characteristic |
Beta |
95% CI |
p-value |
| duration_of_employment |
-0.16 |
-0.32, -0.01 |
0.037 |
| family_members_spouse |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
5.2 |
2.2, 8.1 |
<0.001 |
rsq(prelim_mlr_data1, adj = TRUE)
## [1] 0.04486957
plot(prelim_mlr_data1)




summary(glm(literacy_score ~ duration_of_employment + family_members_spouse + duration_of_employment*family_members_spouse, data = Data1))
##
## Call:
## glm(formula = literacy_score ~ duration_of_employment + family_members_spouse +
## duration_of_employment * family_members_spouse, data = Data1)
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 99.98327 1.21132 82.541
## duration_of_employment -0.09430 0.08309 -1.135
## family_members_spouseYes 12.25985 3.41060 3.595
## duration_of_employment:family_members_spouseYes -0.53781 0.23147 -2.323
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## duration_of_employment 0.257321
## family_members_spouseYes 0.000381 ***
## duration_of_employment:family_members_spouseYes 0.020836 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 63.23885)
##
## Null deviance: 20024 on 298 degrees of freedom
## Residual deviance: 18655 on 295 degrees of freedom
## AIC: 2094.4
##
## Number of Fisher Scoring iterations: 2
prelim_mlr_Interaction <- lm(literacy_score ~ duration_of_employment + family_members_spouse + duration_of_employment*family_members_spouse, data = Data1)
summary(prelim_mlr_Interaction)
##
## Call:
## lm(formula = literacy_score ~ duration_of_employment + family_members_spouse +
## duration_of_employment * family_members_spouse, data = Data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.097 -4.833 -0.852 4.186 45.285
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 99.98327 1.21132 82.541
## duration_of_employment -0.09430 0.08309 -1.135
## family_members_spouseYes 12.25985 3.41060 3.595
## duration_of_employment:family_members_spouseYes -0.53781 0.23147 -2.323
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## duration_of_employment 0.257321
## family_members_spouseYes 0.000381 ***
## duration_of_employment:family_members_spouseYes 0.020836 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.952 on 295 degrees of freedom
## Multiple R-squared: 0.06833, Adjusted R-squared: 0.05885
## F-statistic: 7.212 on 3 and 295 DF, p-value: 0.0001097
tbl_regression(prelim_mlr_Interaction)
| Characteristic |
Beta |
95% CI |
p-value |
| duration_of_employment |
-0.09 |
-0.26, 0.07 |
0.3 |
| family_members_spouse |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
12 |
5.5, 19 |
<0.001 |
| duration_of_employment * family_members_spouse |
|
|
|
| Â Â Â Â duration_of_employment * Yes |
-0.54 |
-0.99, -0.08 |
0.021 |
rsq(prelim_mlr_Interaction, adj = TRUE)
## [1] 0.05885417
plot(prelim_mlr_Interaction)




augment(prelim_mlr_data1)
## # A tibble: 299 × 9
## literacy_score duration_of_employment family_members_spouse .fitted .resid
## <dbl> <dbl> <chr> <dbl> <dbl>
## 1 102 10 No 99.3 2.73
## 2 105 9 No 99.4 5.56
## 3 102 9 Yes 105. -2.59
## 4 107 9 No 99.4 7.56
## 5 111 10 No 99.3 11.7
## 6 98 8 No 99.6 -1.60
## 7 97 10 No 99.3 -2.27
## 8 98 23 No 97.1 0.854
## 9 108 9 No 99.4 8.56
## 10 84 9 No 99.4 -15.4
## # ℹ 289 more rows
## # ℹ 4 more variables: .hat <dbl>, .sigma <dbl>, .cooksd <dbl>, .std.resid <dbl>
augment(prelim_mlr_Interaction)
## # A tibble: 299 × 9
## literacy_score duration_of_employment family_members_spouse .fitted .resid
## <dbl> <dbl> <chr> <dbl> <dbl>
## 1 102 10 No 99.0 2.96
## 2 105 9 No 99.1 5.87
## 3 102 9 Yes 107. -4.55
## 4 107 9 No 99.1 7.87
## 5 111 10 No 99.0 12.0
## 6 98 8 No 99.2 -1.23
## 7 97 10 No 99.0 -2.04
## 8 98 23 No 97.8 0.186
## 9 108 9 No 99.1 8.87
## 10 84 9 No 99.1 -15.1
## # ℹ 289 more rows
## # ℹ 4 more variables: .hat <dbl>, .sigma <dbl>, .cooksd <dbl>, .std.resid <dbl>
summary(Data1$duration_of_employment)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.00 8.00 12.00 13.34 18.00 24.00
newdata <- expand_grid(
duration_of_employment = c(8, 12, 18))
newprediction <- augment(slrdata1, newdata = newdata)
newprediction %>%
ggplot(aes(duration_of_employment, .fitted)) + geom_line()

# Install and load the broom package if not already installed
install.packages("broom")
## Warning: package 'broom' is in use and will not be installed
library(broom)
# Add predictions to the dataset
Data1_augmented <- augment(prelim_mlr_Interaction, data = Data1)
ggplot(Data1_augmented, aes(x = duration_of_employment, y = .fitted, color = family_members_spouse)) +
geom_line(size = 1) + # Add interaction lines
geom_point(aes(y = literacy_score), alpha = 0.6) + # Overlay observed points
labs(
title = "Interaction Effect: Duration of Employment and Family Members (Spouse)",
x = "Duration of Employment",
y = "Literacy Score",
color = "Family Members (Spouse)"
) +
theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

ggplot(Data1_augmented, aes(x = duration_of_employment, y = .fitted)) +
geom_line(color = "blue", size = 1) +
geom_point(aes(y = literacy_score), alpha = 0.6) + # Observed points
facet_wrap(~family_members_spouse) +
labs(
title = "Interaction Effect by Family Members (Spouse)",
x = "Duration of Employment",
y = "Literacy Score"
) +
theme_minimal()

# Add confidence intervals
Data1_augmented <- Data1_augmented %>%
mutate(conf_low = predict(prelim_mlr_Interaction, newdata = Data1, interval = "confidence")[, "lwr"],
conf_high = predict(prelim_mlr_Interaction, newdata = Data1, interval = "confidence")[, "upr"])
# Plot with confidence intervals
ggplot(Data1_augmented, aes(x = duration_of_employment, y = .fitted, color = family_members_spouse)) +
geom_line(size = 1) +
geom_ribbon(aes(ymin = conf_low, ymax = conf_high, fill = family_members_spouse), alpha = 0.2) +
geom_point(aes(y = literacy_score), alpha = 0.6) +
labs(
title = "Interaction Effect with Confidence Intervals",
x = "Duration of Employment",
y = "Literacy Score",
color = "Family Members (Spouse)",
fill = "Family Members (Spouse)"
) +
theme_minimal()

# Create a new dataset
new_data <- expand.grid(
duration_of_employment = c(8, 12, 18), # Replace with your values
family_members_spouse = c("Yes", "No") # Two levels: "Yes" and "No"
)
print(new_data)
## duration_of_employment family_members_spouse
## 1 8 Yes
## 2 12 Yes
## 3 18 Yes
## 4 8 No
## 5 12 No
## 6 18 No
# Make predictions with confidence intervals
predictions <- predict(
prelim_mlr_Interaction, # Your linear model
newdata = new_data, # New dataset
interval = "confidence" # Options: "confidence" or "prediction"
)
# Combine predictions with the new data
predicted_data <- cbind(new_data, predictions)
print(predicted_data)
## duration_of_employment family_members_spouse fit lwr upr
## 1 8 Yes 107.18617 103.61161 110.76072
## 2 12 Yes 104.65769 101.80135 107.51403
## 3 18 Yes 100.86498 97.38969 104.34026
## 4 8 No 99.22883 97.93244 100.52522
## 5 12 No 98.85161 97.87029 99.83294
## 6 18 No 98.28579 97.06470 99.50687
# Visualize the predictions
ggplot(predicted_data, aes(x = duration_of_employment, y = fit, color = family_members_spouse)) +
geom_line(size = 1) +
geom_point(size = 3) +
geom_ribbon(aes(ymin = lwr, ymax = upr, fill = family_members_spouse), alpha = 0.2) +
labs(
title = "Predicted Literacy Score",
x = "Duration of Employment",
y = "Predicted Literacy Score",
color = "Family Members (Spouse)",
fill = "Family Members (Spouse)"
) +
theme_minimal()

^
Literacy score among HO = 99.98 + -0.09(duration of employment) +
12.25(family member spouse) + -0.54(duration of employment*family member
spouse)
#with R2 = 6.83, Adj : 5.85