Import your data

data("mtcars")
mtcars <- as_tibble(mtcars)

Repeat the same operation over different columns of a data frame

Case of numeric variables

mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(.f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(.f = mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
# Adding an argument
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% map_dbl(mean, trim = 0.1)
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% select(.data = ., mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # ℹ 22 more rows
mtcars %>% select(mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # ℹ 22 more rows

Create your own function

# Double values in columns
double_by_vector <- function(x, factor) {x * factor}
10 %>% double_by_vector(factor = 5)
## [1] 50
100 %>% double_by_vector(factor = 5)
## [1] 500
mtcars %>% map_dfr(.x = ., .f = ~double_by_vector(x = .x, factor = 10))
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows
mtcars %>% map_dfr(double_by_vector, factor = 10)
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows

Repeat the same operation over different elements of a list

When you have a grouping variable (factor)

mtcars %>% lm(formula = mpg ~wt, data = .)
## 
## Call:
## lm(formula = mpg ~ wt, data = .)
## 
## Coefficients:
## (Intercept)           wt  
##      37.285       -5.344
mtcars %>% distinct(cyl)
## # A tibble: 3 × 1
##     cyl
##   <dbl>
## 1     6
## 2     4
## 3     8
reg_coeff_tbl <- mtcars %>% 
    
    # Split it into a list of dataf rames
    split(.$cyl) %>%
    
    # Repeat regression over each group
    map(~lm(formula = mpg ~ wt, data = .x)) %>%
    
    # Extract coefficients from regression results
    map(broom::tidy, conf.int = TRUE) %>% 
    
    # Convert to tibble
    bind_rows(.id = "cyl") %>%
    
    # Filter or wt coefficients
    filter(term == "wt")

reg_coeff_tbl %>% 
    
    mutate(estimate = -estimate,
           conf.low = -conf.low,
           conf.high = -conf.high) %>%
    
    ggplot(aes(x = estimate, y = cyl)) +
    geom_point() + 
    geom_errorbar(aes(xmin = conf.low, xmax = conf.high))

Create your own

Choose either one of the two cases above and apply it to your data

Import Data

data <- read_excel("../00_data/myData.xlsx")
data
## # A tibble: 900 × 15
##     year country city    stage home_team away_team home_score away_score outcome
##    <dbl> <chr>   <chr>   <chr> <chr>     <chr>          <dbl>      <dbl> <chr>  
##  1  1930 Uruguay Montev… Grou… France    Mexico             4          1 H      
##  2  1930 Uruguay Montev… Grou… Belgium   United S…          0          3 A      
##  3  1930 Uruguay Montev… Grou… Brazil    Yugoslav…          1          2 A      
##  4  1930 Uruguay Montev… Grou… Peru      Romania            1          3 A      
##  5  1930 Uruguay Montev… Grou… Argentina France             1          0 H      
##  6  1930 Uruguay Montev… Grou… Chile     Mexico             3          0 H      
##  7  1930 Uruguay Montev… Grou… Bolivia   Yugoslav…          0          4 A      
##  8  1930 Uruguay Montev… Grou… Paraguay  United S…          0          3 A      
##  9  1930 Uruguay Montev… Grou… Uruguay   Peru               1          0 H      
## 10  1930 Uruguay Montev… Grou… Argentina Mexico             6          3 H      
## # ℹ 890 more rows
## # ℹ 6 more variables: win_conditions <chr>, winning_team <chr>,
## #   losing_team <chr>, date <dttm>, month <chr>, dayofweek <chr>

Own Example

data1 <- na.omit(data[, c("year", "home_score", "away_score")])
data1
## # A tibble: 900 × 3
##     year home_score away_score
##    <dbl>      <dbl>      <dbl>
##  1  1930          4          1
##  2  1930          0          3
##  3  1930          1          2
##  4  1930          1          3
##  5  1930          1          0
##  6  1930          3          0
##  7  1930          0          4
##  8  1930          0          3
##  9  1930          1          0
## 10  1930          6          3
## # ℹ 890 more rows
double_by_vector <- function(x, factor) {x * factor}

10 %>% double_by_vector(factor = 5)
## [1] 50
100 %>% double_by_vector(factor = 5)
## [1] 500
data1 %>% map_dfr(.x = ., .f = ~double_by_vector(x = .x, factor = 10))
## # A tibble: 900 × 3
##     year home_score away_score
##    <dbl>      <dbl>      <dbl>
##  1 19300         40         10
##  2 19300          0         30
##  3 19300         10         20
##  4 19300         10         30
##  5 19300         10          0
##  6 19300         30          0
##  7 19300          0         40
##  8 19300          0         30
##  9 19300         10          0
## 10 19300         60         30
## # ℹ 890 more rows
data1 %>% map_dfr(double_by_vector, factor = 10)
## # A tibble: 900 × 3
##     year home_score away_score
##    <dbl>      <dbl>      <dbl>
##  1 19300         40         10
##  2 19300          0         30
##  3 19300         10         20
##  4 19300         10         30
##  5 19300         10          0
##  6 19300         30          0
##  7 19300          0         40
##  8 19300          0         30
##  9 19300         10          0
## 10 19300         60         30
## # ℹ 890 more rows

Mean of home score with confidence intervals

data2 <- data %>%
    filter(home_team %in% c("Sweden", "Brazil", "France")) %>%
    select(home_team, home_score) %>%
    pivot_longer(cols = c("home_team"),
                 values_to = "HomeTeam")

standard_deviation <- data2 %>%
  group_by(HomeTeam) %>%
  summarise(total_home_score = sum(home_score),
            stddev_home_score = sd(home_score))

# View with standard deviation
print(standard_deviation)
## # A tibble: 3 × 3
##   HomeTeam total_home_score stddev_home_score
##   <chr>               <dbl>             <dbl>
## 1 Brazil                177              1.54
## 2 France                 85              1.76
## 3 Sweden                 38              1.12
data3 <- data2 %>%
    group_by(HomeTeam) %>%
    summarise(total_home_score = sum(home_score),
            mean_home_score = mean(home_score),
            stddev_home_score = sd(home_score))

data4 <- data3 %>%
     mutate(conf_int_lower = mean_home_score - qt(1 - 0.01 / 2, n() - 1) * (stddev_home_score / sqrt(n())),
         conf_int_upper = mean_home_score + qt(1 - 0.01 / 2, n() - 1) * (stddev_home_score / sqrt(n())))

print(data4)
## # A tibble: 3 × 6
##   HomeTeam total_home_score mean_home_score stddev_home_score conf_int_lower
##   <chr>               <dbl>           <dbl>             <dbl>          <dbl>
## 1 Brazil                177            2.11              1.54          -6.70
## 2 France                 85            2.12              1.76          -7.94
## 3 Sweden                 38            1.52              1.12          -4.91
## # ℹ 1 more variable: conf_int_upper <dbl>
data4 %>% 
    ggplot(aes(x = mean_home_score, y = HomeTeam)) +
    geom_point() +
    geom_errorbar(aes(xmin = conf_int_lower, xmax = conf_int_upper), width = 0.5) +
    labs(x = "Goals", y = "Teams", title = "Mean Home Score")