data("mtcars")
mtcars <- as_tibble(mtcars)
skimr::skim(mtcars)
Name | mtcars |
Number of rows | 32 |
Number of columns | 11 |
_______________________ | |
Column type frequency: | |
numeric | 11 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
mpg | 0 | 1 | 20.09 | 6.03 | 10.40 | 15.43 | 19.20 | 22.80 | 33.90 | ▃▇▅▁▂ |
cyl | 0 | 1 | 6.19 | 1.79 | 4.00 | 4.00 | 6.00 | 8.00 | 8.00 | ▆▁▃▁▇ |
disp | 0 | 1 | 230.72 | 123.94 | 71.10 | 120.83 | 196.30 | 326.00 | 472.00 | ▇▃▃▃▂ |
hp | 0 | 1 | 146.69 | 68.56 | 52.00 | 96.50 | 123.00 | 180.00 | 335.00 | ▇▇▆▃▁ |
drat | 0 | 1 | 3.60 | 0.53 | 2.76 | 3.08 | 3.70 | 3.92 | 4.93 | ▇▃▇▅▁ |
wt | 0 | 1 | 3.22 | 0.98 | 1.51 | 2.58 | 3.33 | 3.61 | 5.42 | ▃▃▇▁▂ |
qsec | 0 | 1 | 17.85 | 1.79 | 14.50 | 16.89 | 17.71 | 18.90 | 22.90 | ▃▇▇▂▁ |
vs | 0 | 1 | 0.44 | 0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 | ▇▁▁▁▆ |
am | 0 | 1 | 0.41 | 0.50 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 | ▇▁▁▁▆ |
gear | 0 | 1 | 3.69 | 0.74 | 3.00 | 3.00 | 4.00 | 4.00 | 5.00 | ▇▁▆▁▂ |
carb | 0 | 1 | 2.81 | 1.62 | 1.00 | 2.00 | 2.00 | 4.00 | 8.00 | ▇▂▅▁▁ |
mtcars %>% distinct(cyl)
## # A tibble: 3 × 1
## cyl
## <dbl>
## 1 6
## 2 4
## 3 8
Case of numeric variables
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x))
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
mtcars %>% map_dbl(.f = ~mean(x = .x))
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
mtcars %>% map_dbl(mean, trim = 0.1)
## mpg cyl disp hp drat wt
## 19.6961538 6.2307692 222.5230769 141.1923077 3.5792308 3.1526923
## qsec vs am gear carb
## 17.8276923 0.4230769 0.3846154 3.6153846 2.6538462
#Adding an argument
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
## mpg cyl disp hp drat wt
## 19.6961538 6.2307692 222.5230769 141.1923077 3.5792308 3.1526923
## qsec vs am gear carb
## 17.8276923 0.4230769 0.3846154 3.6153846 2.6538462
mtcars %>% map_dbl(mean)
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
mtcars %>% select(.data = ., mpg)
## # A tibble: 32 × 1
## mpg
## <dbl>
## 1 21
## 2 21
## 3 22.8
## 4 21.4
## 5 18.7
## 6 18.1
## 7 14.3
## 8 24.4
## 9 22.8
## 10 19.2
## # ℹ 22 more rows
mtcars %>% select(mpg)
## # A tibble: 32 × 1
## mpg
## <dbl>
## 1 21
## 2 21
## 3 22.8
## 4 21.4
## 5 18.7
## 6 18.1
## 7 14.3
## 8 24.4
## 9 22.8
## 10 19.2
## # ℹ 22 more rows
Create your own function
#Double value in columns
double_by_factor <- function(x, factor) {x * factor}
10 %>% double_by_factor(factor = 2)
## [1] 20
mtcars %>% map(.x = ., .f = ~double_by_factor(x = .x, factor = 10))
## $mpg
## [1] 210 210 228 214 187 181 143 244 228 192 178 164 173 152 104 104 147 324 304
## [20] 339 215 155 152 133 192 273 260 304 158 197 150 214
##
## $cyl
## [1] 60 60 40 60 80 60 80 40 40 60 60 80 80 80 80 80 80 40 40 40 40 80 80 80 80
## [26] 40 40 40 80 60 80 40
##
## $disp
## [1] 1600 1600 1080 2580 3600 2250 3600 1467 1408 1676 1676 2758 2758 2758 4720
## [16] 4600 4400 787 757 711 1201 3180 3040 3500 4000 790 1203 951 3510 1450
## [31] 3010 1210
##
## $hp
## [1] 1100 1100 930 1100 1750 1050 2450 620 950 1230 1230 1800 1800 1800 2050
## [16] 2150 2300 660 520 650 970 1500 1500 2450 1750 660 910 1130 2640 1750
## [31] 3350 1090
##
## $drat
## [1] 39.0 39.0 38.5 30.8 31.5 27.6 32.1 36.9 39.2 39.2 39.2 30.7 30.7 30.7 29.3
## [16] 30.0 32.3 40.8 49.3 42.2 37.0 27.6 31.5 37.3 30.8 40.8 44.3 37.7 42.2 36.2
## [31] 35.4 41.1
##
## $wt
## [1] 26.20 28.75 23.20 32.15 34.40 34.60 35.70 31.90 31.50 34.40 34.40 40.70
## [13] 37.30 37.80 52.50 54.24 53.45 22.00 16.15 18.35 24.65 35.20 34.35 38.40
## [25] 38.45 19.35 21.40 15.13 31.70 27.70 35.70 27.80
##
## $qsec
## [1] 164.6 170.2 186.1 194.4 170.2 202.2 158.4 200.0 229.0 183.0 189.0 174.0
## [13] 176.0 180.0 179.8 178.2 174.2 194.7 185.2 199.0 200.1 168.7 173.0 154.1
## [25] 170.5 189.0 167.0 169.0 145.0 155.0 146.0 186.0
##
## $vs
## [1] 0 0 10 10 0 10 0 10 10 10 10 0 0 0 0 0 0 10 10 10 10 0 0 0 0
## [26] 10 0 10 0 0 0 10
##
## $am
## [1] 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10 0 0 0 0 0
## [26] 10 10 10 10 10 10 10
##
## $gear
## [1] 40 40 40 30 30 30 30 40 40 40 40 30 30 30 30 30 30 40 40 40 30 30 30 30 30
## [26] 40 50 50 50 50 50 40
##
## $carb
## [1] 40 40 10 10 20 10 40 20 20 40 40 30 30 30 40 40 40 10 20 10 10 20 20 40 20
## [26] 10 20 20 40 60 80 20
mtcars %>% map_dfr(.x = ., .f = ~double_by_factor(x = .x, factor = 10))
## # A tibble: 32 × 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 210 60 1600 1100 39 26.2 165. 0 10 40 40
## 2 210 60 1600 1100 39 28.8 170. 0 10 40 40
## 3 228 40 1080 930 38.5 23.2 186. 10 10 40 10
## 4 214 60 2580 1100 30.8 32.2 194. 10 0 30 10
## 5 187 80 3600 1750 31.5 34.4 170. 0 0 30 20
## 6 181 60 2250 1050 27.6 34.6 202. 10 0 30 10
## 7 143 80 3600 2450 32.1 35.7 158. 0 0 30 40
## 8 244 40 1467 620 36.9 31.9 200 10 0 40 20
## 9 228 40 1408 950 39.2 31.5 229 10 0 40 20
## 10 192 60 1676 1230 39.2 34.4 183 10 0 40 40
## # ℹ 22 more rows
mtcars %>% map_dfr(double_by_factor, factor = 10)
## # A tibble: 32 × 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 210 60 1600 1100 39 26.2 165. 0 10 40 40
## 2 210 60 1600 1100 39 28.8 170. 0 10 40 40
## 3 228 40 1080 930 38.5 23.2 186. 10 10 40 10
## 4 214 60 2580 1100 30.8 32.2 194. 10 0 30 10
## 5 187 80 3600 1750 31.5 34.4 170. 0 0 30 20
## 6 181 60 2250 1050 27.6 34.6 202. 10 0 30 10
## 7 143 80 3600 2450 32.1 35.7 158. 0 0 30 40
## 8 244 40 1467 620 36.9 31.9 200 10 0 40 20
## 9 228 40 1408 950 39.2 31.5 229 10 0 40 20
## 10 192 60 1676 1230 39.2 34.4 183 10 0 40 40
## # ℹ 22 more rows
When you have a grouping variable (factor)
mtcars %>% lm(formula = mpg ~ wt, data = .)
##
## Call:
## lm(formula = mpg ~ wt, data = .)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344
mtcars %>% distinct(cyl)
## # A tibble: 3 × 1
## cyl
## <dbl>
## 1 6
## 2 4
## 3 8
reg_coeff_tbl <- mtcars%>%
# Split it into a list by of frames
split(.$cyl) %>%
# Repeat the same operation over each element
map(~lm(formula = mpg ~ wt, data = .x)) %>%
# Return regression coefficients in a tidy tibble
map(broom::tidy, conf.int = TRUE) %>%
# Bind multiple data frames by row
bind_rows(.id = "cyl") %>%
# Filter for coefficient of interest
filter(term == "wt")
reg_coeff_tbl %>%
mutate(estimate = -estimate,
conf.low = -conf.low,
conf.high = -conf.high) %>%
ggplot(aes(x = estimate, y = cyl)) +
geom_point() +
geom_errorbarh(aes(xmin=conf.low, xmax = conf.high))
Choose either one of the two cases above and apply it to your data
# excel filer
nhl_rosters <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2024/2024-01-09/nhl_rosters.csv')
## Rows: 54883 Columns: 18
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): team_code, position_type, headshot, first_name, last_name, positi...
## dbl (7): season, player_id, sweater_number, height_in_inches, weight_in_po...
## date (1): birth_date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
nhl_rosters <- as_tibble(nhl_rosters)
nhl_rosters %>% lm(formula = height_in_centimeters ~ weight_in_kilograms, data = .)
##
## Call:
## lm(formula = height_in_centimeters ~ weight_in_kilograms, data = .)
##
## Coefficients:
## (Intercept) weight_in_kilograms
## 135.4973 0.5457
nhl_rosters %>% distinct(team_code)
## # A tibble: 58 × 1
## team_code
## <chr>
## 1 ATL
## 2 HFD
## 3 MNS
## 4 QUE
## 5 WIN
## 6 CLR
## 7 SEN
## 8 HAM
## 9 PIR
## 10 QUA
## # ℹ 48 more rows
reg_coeff_tbl <- nhl_rosters%>%
# Split it into a list by of frames
split(.$team_code) %>%
# Repeat the same operation over each element
map(~lm(formula = height_in_centimeters ~ weight_in_kilograms, data = .x)) %>%
# Return regression coefficients in a tidy tibble
map(broom::tidy, conf.int = TRUE) %>%
# Bind multiple data frames by row
bind_rows(.id = "team_code") %>%
# Filter for coefficient of interest
filter(term == "weight_in_kilograms")
# Plot the regression coefficients
reg_coeff_tbl %>%
mutate(estimate = -estimate,
conf.low = -conf.low,
conf.high = -conf.high) %>%
ggplot(aes(x = estimate, y = team_code)) +
geom_point() +
geom_errorbarh(aes(xmin = conf.low, xmax = conf.high)) +
labs(
title = "Regression Coefficients by Team",
x = "Coefficient Estimate (Inverse)",
y = "Team Code") +
theme_minimal()