Accuracy
# Model accuracy
df %>% mutate_if(is.character, as.factor) %>%
mutate(age = scale(age), age = as.double(age),
frequency = scale(frequency), frequency = as.double(frequency),
AoO = scale(AoO), AoO = as.double(AoO)) -> df
glmer(accuracy ~
# group * condition * frequency +
# group * condition +
group +
condition +
frequency +
age +
AoO * group +
(1 + condition|ID) + (1|word),
data = df,
family = "binomial",
control = glmerControl(optimizer = "bobyqa")) -> m1
# test model
# drop1(m1, test = "Chisq")
# Anova(m1, type = "III")
Model accuracy
|
|
Chisq
|
Df
|
Pr(>Chisq)
|
|
(Intercept)
|
17.06
|
1
|
0.000
|
|
group
|
13.53
|
1
|
0.000
|
|
condition
|
9.27
|
1
|
0.002
|
|
frequency
|
8.06
|
1
|
0.005
|
|
age
|
11.11
|
1
|
0.001
|
|
AoO
|
8.75
|
1
|
0.003
|
|
group:AoO
|
4.10
|
1
|
0.043
|
|
group
|
AoO.trend
|
SE
|
df
|
asymp.LCL
|
asymp.UCL
|
z.ratio
|
p.value
|
|
DYS
|
-0.28
|
0.10
|
Inf
|
-0.47
|
-0.10
|
-2.96
|
0.003
|
|
TD
|
-0.06
|
0.05
|
Inf
|
-0.16
|
0.04
|
-1.25
|
0.212
|

RT
df %>%
# only correct answers
filter(accuracy == 1) %>%
mutate(rt = log(reaction_time)) %>%
# model
lmer(formula =
rt ~
# frequency * group +
frequency +
group +
condition +
# condition * group +
age +
# AoO * group +
AoO +
(1 + condition|ID) + (1|word)) -> m2
# test
# drop1(m2, test = "Chisq")
# Anova(m2, type = "III")
Model RT
|
|
Chisq
|
Df
|
Pr(>Chisq)
|
|
(Intercept)
|
12504.26
|
1
|
0.000
|
|
frequency
|
15.67
|
1
|
0.000
|
|
group
|
25.08
|
1
|
0.000
|
|
condition
|
2.32
|
1
|
0.128
|
|
age
|
0.01
|
1
|
0.918
|
|
AoO
|
2.73
|
1
|
0.099
|
