Introduction

In this report, we explore global poverty metrics, focusing on indicators such as the Multidimensional Poverty Index (MPI), headcount ratio, intensity of deprivation, vulnerability to poverty, and severe poverty levels using data cleaning, descriptive statistics, and visualization techniques to reveal trends, regional disparities, and correlations.

# Clean data
colnames(data) <- data[1, ]  # Use the first row as column headers
data <- data[-1, ]  # Remove the first row now
colnames(data) <- c(
  "location_code", "has_hrp", "in_gho", "provider_admin1_name", 
  "admin1_code", "admin1_name", "mpi", "headcount_ratio", 
  "intensity_of_deprivation", "vulnerable_to_poverty", 
  "in_severe_poverty", "reference_period_start", "reference_period_end"
)
numeric_cols <- c("mpi", "headcount_ratio", "intensity_of_deprivation", 
                  "vulnerable_to_poverty", "in_severe_poverty")
data[numeric_cols] <- lapply(data[numeric_cols], as.numeric)

# Display structure
str(data)
## 'data.frame':    629 obs. of  13 variables:
##  $ location_code           : chr  "AFG" "AFG" "AFG" "AFG" ...
##  $ has_hrp                 : chr  "True" "True" "True" "True" ...
##  $ in_gho                  : chr  "True" "True" "True" "True" ...
##  $ provider_admin1_name    : chr  "Central" "Central" "Central Highlands" "Central Highlands" ...
##  $ admin1_code             : chr  "AFG-XXX" "AFG-XXX" "AFG-XXX" "AFG-XXX" ...
##  $ admin1_name             : chr  "UNSPECIFIED" "UNSPECIFIED" "UNSPECIFIED" "UNSPECIFIED" ...
##  $ mpi                     : num  0.296 0.199 0.459 0.36 0.419 ...
##  $ headcount_ratio         : num  54.6 39.6 77.9 67.8 75.2 ...
##  $ intensity_of_deprivation: num  54.3 50.3 59 53 55.7 ...
##  $ vulnerable_to_poverty   : num  16.6 18.2 14.7 22.3 12.4 ...
##  $ in_severe_poverty       : num  31 31 53.5 53.5 46.2 ...
##  $ reference_period_start  : chr  "2010-01-01" "2015-01-01" "2010-01-01" "2015-01-01" ...
##  $ reference_period_end    : chr  "2011-12-31" "2016-12-31" "2011-12-31" "2016-12-31" ...
# Summary statistics
summary(data[numeric_cols])
##       mpi            headcount_ratio    intensity_of_deprivation
##  Min.   :0.0002508   Min.   : 0.05816   Min.   :33.33           
##  1st Qu.:0.0763920   1st Qu.:17.50151   1st Qu.:43.85           
##  Median :0.2568674   Median :50.51932   Median :50.22           
##  Mean   :0.2828486   Mean   :49.81679   Mean   :51.25           
##  3rd Qu.:0.4598473   3rd Qu.:80.35057   3rd Qu.:58.08           
##  Max.   :0.7406410   Max.   :99.67902   Max.   :75.89           
##  vulnerable_to_poverty in_severe_poverty
##  Min.   : 0.183        Min.   : 0.000   
##  1st Qu.: 8.291        1st Qu.: 6.274   
##  Median :14.365        Median :28.545   
##  Mean   :14.876        Mean   :34.744   
##  3rd Qu.:20.834        3rd Qu.:61.458   
##  Max.   :41.093        Max.   :94.187
library(ggplot2)

# Histogram of MPI
ggplot(data, aes(x = mpi)) +
  geom_histogram(binwidth = 0.05, fill = "blue", alpha = 0.7) +
  theme_minimal() +
  labs(title = "Distribution of MPI", x = "MPI", y = "Frequency")

MPI vs. Headcount Ratio

# Scatter plot of MPI vs. Headcount Ratio
ggplot(data, aes(x = mpi, y = headcount_ratio)) +
  geom_point(alpha = 0.7) +
  theme_minimal() +
  labs(title = "MPI vs Headcount Ratio", x = "MPI", y = "Headcount Ratio")

Regional Comparison

Compare poverty indicators (e.g., MPI, headcount ratio) across different regions (admin1_name).

Average MPI by Region

# Average MPI by region
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
regional_mpi <- data %>%
  group_by(admin1_name) %>%
  summarize(avg_mpi = mean(mpi, na.rm = TRUE)) %>%
  arrange(desc(avg_mpi))

# Bar plot
ggplot(regional_mpi, aes(x = reorder(admin1_name, -avg_mpi), y = avg_mpi)) +
  geom_bar(stat = "identity", fill = "skyblue") +
  theme_minimal() +
  labs(title = "Average MPI by Region", x = "Region", y = "Average MPI") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Headcount Ratio Over Time

# Line plot of headcount ratio over time
ggplot(data, aes(x = reference_period_start, y = headcount_ratio, color = admin1_name)) +
  geom_line() +
  theme_minimal() +
  labs(title = "Headcount Ratio Trends Over Time", x = "Year", y = "Headcount Ratio")

Correlation Between Indicators

Explore the relationship between poverty indicators, such as mpi, headcount_ratio, and intensity_of_deprivation.

Correlation Matrix

# Correlation matrix of numeric variables
library(corrplot)
## corrplot 0.95 loaded
numeric_data <- data[numeric_cols]
cor_matrix <- cor(numeric_data, use = "complete.obs")

# Correlation plot
corrplot(cor_matrix, method = "circle", type = "upper", tl.cex = 0.8)

Severity Analysis

Identify regions or time periods with severe poverty levels.

Highlight Regions with Severe Poverty

# Filter data for severe poverty
severe_poverty <- data %>%
  filter(in_severe_poverty > 50)  # Example threshold for severe poverty

# Table of regions with severe poverty
severe_poverty %>%
  select(admin1_name, reference_period_start, in_severe_poverty) %>%
  arrange(desc(in_severe_poverty))
##     admin1_name reference_period_start in_severe_poverty
## 1   UNSPECIFIED             2019-01-01          94.18713
## 2   UNSPECIFIED             2010-01-01          92.76336
## 3   UNSPECIFIED             2014-01-01          92.76336
## 4   UNSPECIFIED             2006-01-01          92.67624
## 5   UNSPECIFIED             2012-01-01          92.67624
## 6   UNSPECIFIED             2019-01-01          91.99853
## 7   UNSPECIFIED             2010-01-01          91.99088
## 8   UNSPECIFIED             2014-01-01          91.99088
## 9   UNSPECIFIED             2019-01-01          91.94398
## 10  UNSPECIFIED             2010-01-01          91.22666
## 11  UNSPECIFIED             2014-01-01          91.22666
## 12  UNSPECIFIED             2019-01-01          90.37550
## 13  UNSPECIFIED             2006-01-01          89.96588
## 14  UNSPECIFIED             2012-01-01          89.96588
## 15  UNSPECIFIED             2019-01-01          89.76591
## 16  UNSPECIFIED             2010-01-01          89.66761
## 17  UNSPECIFIED             2014-01-01          89.66761
## 18  UNSPECIFIED             2019-01-01          89.45431
## 19  UNSPECIFIED             2006-01-01          88.90052
## 20  UNSPECIFIED             2012-01-01          88.90052
## 21  UNSPECIFIED             2006-01-01          88.70196
## 22  UNSPECIFIED             2012-01-01          88.70196
## 23  UNSPECIFIED             2006-01-01          88.59160
## 24  UNSPECIFIED             2012-01-01          88.59160
## 25  UNSPECIFIED             2010-01-01          88.49968
## 26  UNSPECIFIED             2019-01-01          88.31121
## 27  UNSPECIFIED             2010-01-01          87.54323
## 28  UNSPECIFIED             2014-01-01          87.54323
## 29  UNSPECIFIED             2010-01-01          86.78815
## 30  UNSPECIFIED             2014-01-01          86.78815
## 31  UNSPECIFIED             2006-01-01          86.64694
## 32  UNSPECIFIED             2012-01-01          86.64694
## 33  UNSPECIFIED             2019-01-01          86.62932
## 34  UNSPECIFIED             2010-01-01          86.07037
## 35  UNSPECIFIED             2014-01-01          86.07037
## 36  UNSPECIFIED             2010-01-01          86.03351
## 37  UNSPECIFIED             2014-01-01          86.03351
## 38  UNSPECIFIED             2010-01-01          85.60341
## 39  UNSPECIFIED             2014-01-01          85.60341
## 40  UNSPECIFIED             2019-01-01          85.57519
## 41  UNSPECIFIED             2019-01-01          85.00178
## 42  UNSPECIFIED             2010-01-01          84.45917
## 43  UNSPECIFIED             2014-01-01          84.45917
## 44  UNSPECIFIED             2010-01-01          83.75741
## 45  UNSPECIFIED             2010-01-01          82.69446
## 46  UNSPECIFIED             2014-01-01          82.69446
## 47  UNSPECIFIED             2010-01-01          82.35354
## 48  UNSPECIFIED             2014-01-01          82.35354
## 49  UNSPECIFIED             2000-01-01          82.31025
## 50  UNSPECIFIED             2010-01-01          82.31025
## 51  UNSPECIFIED             2019-01-01          81.78364
## 52  UNSPECIFIED             2003-01-01          81.48199
## 53  UNSPECIFIED             2011-01-01          81.48199
## 54  UNSPECIFIED             2006-01-01          80.63445
## 55  UNSPECIFIED             2015-01-01          80.63445
## 56  UNSPECIFIED             2000-01-01          80.11763
## 57  UNSPECIFIED             2010-01-01          80.11763
## 58  UNSPECIFIED             2003-01-01          79.32308
## 59  UNSPECIFIED             2011-01-01          79.32308
## 60  UNSPECIFIED             2010-01-01          78.64556
## 61  UNSPECIFIED             2014-01-01          78.64556
## 62  UNSPECIFIED             2019-01-01          78.63210
## 63  UNSPECIFIED             2000-01-01          77.95217
## 64  UNSPECIFIED             2010-01-01          77.95217
## 65  UNSPECIFIED             2000-01-01          77.80555
## 66  UNSPECIFIED             2010-01-01          77.80555
## 67  UNSPECIFIED             2010-01-01          77.56249
## 68  UNSPECIFIED             2014-01-01          77.56249
## 69  UNSPECIFIED             2000-01-01          77.52427
## 70  UNSPECIFIED             2010-01-01          77.52427
## 71  UNSPECIFIED             2003-01-01          77.41421
## 72  UNSPECIFIED             2011-01-01          77.41421
## 73  UNSPECIFIED             2003-01-01          77.20384
## 74  UNSPECIFIED             2011-01-01          77.20384
## 75  UNSPECIFIED             2010-01-01          76.77138
## 76  UNSPECIFIED             2010-01-01          76.17450
## 77  UNSPECIFIED             2014-01-01          76.17450
## 78  UNSPECIFIED             2018-01-01          75.61750
## 79  UNSPECIFIED             2003-01-01          74.58991
## 80  UNSPECIFIED             2011-01-01          74.58991
## 81  UNSPECIFIED             2010-01-01          72.95418
## 82  UNSPECIFIED             2011-01-01          72.94791
## 83  UNSPECIFIED             2016-01-01          72.94791
## 84  UNSPECIFIED             2010-01-01          72.84281
## 85  UNSPECIFIED             2018-01-01          72.64809
## 86  UNSPECIFIED             2006-01-01          72.61611
## 87  UNSPECIFIED             2015-01-01          72.61611
## 88  UNSPECIFIED             2010-01-01          72.23191
## 89  UNSPECIFIED             2010-01-01          71.79485
## 90  UNSPECIFIED             2014-01-01          71.79485
## 91  UNSPECIFIED             2011-01-01          71.66309
## 92  UNSPECIFIED             2016-01-01          71.66309
## 93  UNSPECIFIED             2010-01-01          71.48906
## 94  UNSPECIFIED             2007-01-01          71.47957
## 95  UNSPECIFIED             2013-01-01          71.47957
## 96  UNSPECIFIED             2019-01-01          71.32949
## 97  UNSPECIFIED             2018-01-01          71.19439
## 98  UNSPECIFIED             2006-01-01          70.91844
## 99  UNSPECIFIED             2015-01-01          70.91844
## 100 UNSPECIFIED             2006-01-01          70.70520
## 101 UNSPECIFIED             2015-01-01          70.70520
## 102 UNSPECIFIED             2018-01-01          70.68489
## 103 UNSPECIFIED             2000-01-01          70.61557
## 104 UNSPECIFIED             2010-01-01          70.61557
## 105 UNSPECIFIED             2018-01-01          70.40144
## 106 UNSPECIFIED             2019-01-01          69.62147
## 107 UNSPECIFIED             2011-01-01          69.44511
## 108 UNSPECIFIED             2016-01-01          69.44511
## 109 UNSPECIFIED             2010-01-01          68.55777
## 110 UNSPECIFIED             2014-01-01          68.55777
## 111 UNSPECIFIED             2007-01-01          68.53120
## 112 UNSPECIFIED             2013-01-01          68.53120
## 113 UNSPECIFIED             2013-01-01          68.48426
## 114 UNSPECIFIED             2016-01-01          68.48426
## 115 UNSPECIFIED             2011-01-01          68.23656
## 116 UNSPECIFIED             2016-01-01          68.23656
## 117 UNSPECIFIED             2010-01-01          68.18000
## 118 UNSPECIFIED             2015-01-01          68.18000
## 119 UNSPECIFIED             2010-01-01          68.15199
## 120 UNSPECIFIED             2014-01-01          68.15199
## 121 UNSPECIFIED             2019-01-01          67.87388
## 122 UNSPECIFIED             2019-01-01          67.80797
## 123 UNSPECIFIED             2010-01-01          66.85831
## 124 UNSPECIFIED             2011-01-01          66.76200
## 125 UNSPECIFIED             2014-01-01          66.76200
## 126 UNSPECIFIED             2010-01-01          66.69556
## 127 UNSPECIFIED             2006-01-01          66.63097
## 128 UNSPECIFIED             2015-01-01          66.63097
## 129 UNSPECIFIED             2010-01-01          65.66816
## 130 UNSPECIFIED             2003-01-01          65.47248
## 131 UNSPECIFIED             2011-01-01          65.47248
## 132 UNSPECIFIED             2003-01-01          65.27379
## 133 UNSPECIFIED             2011-01-01          65.27379
## 134 UNSPECIFIED             2011-01-01          64.92234
## 135 UNSPECIFIED             2016-01-01          64.92234
## 136 UNSPECIFIED             2019-01-01          64.51530
## 137 UNSPECIFIED             2018-01-01          64.34212
## 138 UNSPECIFIED             2018-01-01          64.30396
## 139 UNSPECIFIED             2007-01-01          64.26486
## 140 UNSPECIFIED             2013-01-01          64.26486
## 141 UNSPECIFIED             2006-01-01          64.15202
## 142 UNSPECIFIED             2015-01-01          64.15202
## 143 UNSPECIFIED             2007-01-01          63.44816
## 144 UNSPECIFIED             2013-01-01          63.44816
## 145 UNSPECIFIED             2010-01-01          63.41221
## 146 UNSPECIFIED             2014-01-01          63.41221
## 147 UNSPECIFIED             2011-01-01          63.24015
## 148 UNSPECIFIED             2016-01-01          63.24015
## 149 UNSPECIFIED             2010-01-01          63.07241
## 150 UNSPECIFIED             2014-01-01          62.86707
## 151 UNSPECIFIED             2003-01-01          62.48232
## 152 UNSPECIFIED             2011-01-01          62.48232
## 153 UNSPECIFIED             2007-01-01          62.31233
## 154 UNSPECIFIED             2013-01-01          62.31233
## 155 UNSPECIFIED             2019-01-01          62.03584
## 156 UNSPECIFIED             2006-01-01          61.56455
## 157 UNSPECIFIED             2015-01-01          61.56455
## 158 UNSPECIFIED             2003-01-01          61.45777
## 159 UNSPECIFIED             2011-01-01          61.45777
## 160 UNSPECIFIED             2018-01-01          61.21812
## 161 UNSPECIFIED             2006-01-01          61.07919
## 162 UNSPECIFIED             2012-01-01          61.07919
## 163 UNSPECIFIED             2013-01-01          60.19625
## 164 UNSPECIFIED             2016-01-01          60.19625
## 165 UNSPECIFIED             2021-01-01          59.93430
## 166 UNSPECIFIED             2011-01-01          59.49878
## 167 UNSPECIFIED             2016-01-01          59.49878
## 168 UNSPECIFIED             2021-01-01          59.08237
## 169 UNSPECIFIED             2018-01-01          58.93027
## 170 UNSPECIFIED             2019-01-01          58.85009
## 171 UNSPECIFIED             2018-01-01          58.33613
## 172 UNSPECIFIED             2013-01-01          57.75579
## 173 UNSPECIFIED             2016-01-01          57.75579
## 174 UNSPECIFIED             2019-01-01          57.59431
## 175 UNSPECIFIED             2010-01-01          56.41344
## 176 UNSPECIFIED             2007-01-01          55.69084
## 177 UNSPECIFIED             2013-01-01          55.69084
## 178 UNSPECIFIED             2019-01-01          55.66616
## 179 UNSPECIFIED             2019-01-01          55.63552
## 180 UNSPECIFIED             2010-01-01          55.55790
## 181 UNSPECIFIED             2015-01-01          55.55790
## 182 UNSPECIFIED             2014-01-01          55.41747
## 183 UNSPECIFIED             2017-01-01          54.91716
## 184 UNSPECIFIED             2017-01-01          54.33861
## 185 UNSPECIFIED             2014-01-01          54.30882
## 186 UNSPECIFIED             2018-01-01          54.29043
## 187 UNSPECIFIED             2014-01-01          54.05859
## 188 UNSPECIFIED             2011-01-01          53.99309
## 189 UNSPECIFIED             2014-01-01          53.99309
## 190 UNSPECIFIED             2021-01-01          53.97297
## 191 UNSPECIFIED             2013-01-01          53.73095
## 192 UNSPECIFIED             2010-01-01          53.68111
## 193 UNSPECIFIED             2015-01-01          53.68111
## 194 UNSPECIFIED             2007-01-01          53.61741
## 195 UNSPECIFIED             2013-01-01          53.61741
## 196 UNSPECIFIED             2010-01-01          53.53306
## 197 UNSPECIFIED             2015-01-01          53.53306
## 198 UNSPECIFIED             2019-01-01          53.24220
## 199 UNSPECIFIED             2010-01-01          52.61413
## 200 UNSPECIFIED             2015-01-01          52.61413
## 201 UNSPECIFIED             2013-01-01          52.20366
## 202 UNSPECIFIED             2016-01-01          52.20366
## 203 UNSPECIFIED             2013-01-01          51.95842
## 204 UNSPECIFIED             2016-01-01          51.95842
## 205 UNSPECIFIED             2018-01-01          51.24005
## 206 UNSPECIFIED             2014-01-01          51.22190
## 207 UNSPECIFIED             2005-01-01          50.98148
## 208 UNSPECIFIED             2011-01-01          50.98148
## 209 UNSPECIFIED             2013-01-01          50.79729
## 210 UNSPECIFIED             2016-01-01          50.79729
## 211 UNSPECIFIED             2018-01-01          50.52719
## 212 UNSPECIFIED             2018-01-01          50.43653
## 213 UNSPECIFIED             2018-01-01          50.20177

Vulnerable Populations

Analyze the percentage of people vulnerable to poverty (vulnerable_to_poverty). ## Vulnerability to Poverty by Region

# Box plot for vulnerable populations by region
ggplot(data, aes(x = admin1_name, y = vulnerable_to_poverty)) +
  geom_boxplot(fill = "lightgreen", alpha = 0.7) +
  theme_minimal() +
  labs(title = "Vulnerability to Poverty by Region", x = "Region", y = "Vulnerability (%)") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Outlier Detection

Detect extreme values for poverty metrics.

# Boxplot for MPI to detect outliers
ggplot(data, aes(x = "", y = mpi)) +
  geom_boxplot(fill = "orange", alpha = 0.7) +
  theme_minimal() +
  labs(title = "Outliers in MPI", x = "", y = "MPI")

Combine Insights

Generate an integrated dashboard with multiple visualizations using the flexdashboard or shiny package.

# Example: Shiny Dashboard
library(shiny)
library(ggplot2)

ui <- fluidPage(
  titlePanel("Poverty Indicators Dashboard"),
  sidebarLayout(
    sidebarPanel(
      selectInput("indicator", "Select Indicator", choices = numeric_cols)
    ),
    mainPanel(
      plotOutput("trendPlot")
    )
  )
)

server <- function(input, output) {
  output$trendPlot <- renderPlot({
    ggplot(data, aes(x = reference_period_start, y = !!sym(input$indicator), color = admin1_name)) +
      geom_line() +
      theme_minimal() +
      labs(title = paste(input$indicator, "Trends Over Time"), x = "Year", y = input$indicator)
  })
}

shinyApp(ui = ui, server = server)
Shiny applications not supported in static R Markdown documents