data=read.csv("E:/karpur.csv")
library(caret)
## Warning: package 'caret' was built under R version 4.4.2
## Loading required package: ggplot2
## Loading required package: lattice
model_1<- lm(k.core~ .-Facies,data=data)
summary(model_1)
## 
## Call:
## lm(formula = k.core ~ . - Facies, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5549.5  -755.5  -178.1   578.0 11260.8 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  60762.728  16605.360   3.659 0.000269 ***
## depth           -7.398      1.446  -5.115 3.92e-07 ***
## caliper      -3955.952   1055.105  -3.749 0.000190 ***
## ind.deep       -14.183      2.345  -6.048 2.24e-09 ***
## ind.med         17.300      2.509   6.896 1.08e-11 ***
## gamma          -77.487      5.475 -14.153  < 2e-16 ***
## phi.N        -1784.704   1301.772  -1.371 0.170763    
## R.deep         -26.007      6.974  -3.729 0.000206 ***
## R.med           63.525      9.841   6.455 1.86e-10 ***
## SP              -8.784      3.460  -2.539 0.011313 *  
## density.corr  -523.060   5358.876  -0.098 0.922269    
## density       8011.106   1120.554   7.149 1.96e-12 ***
## phi.core     18320.336   2380.161   7.697 4.07e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1442 on 806 degrees of freedom
## Multiple R-squared:  0.5903, Adjusted R-squared:  0.5842 
## F-statistic: 96.77 on 12 and 806 DF,  p-value: < 2.2e-16
k.predicted_1 <-predict(model_1,data=data)
plot(k.predicted_1,data$k.core)

rmse_1<- RMSE(k.predicted_1,data$k.core )
rmse_1
## [1] 1430.118
model_2<-step(model_1 , direction = "backward")
## Start:  AIC=11926.91
## k.core ~ (depth + caliper + ind.deep + ind.med + gamma + phi.N + 
##     R.deep + R.med + SP + density.corr + density + phi.core + 
##     Facies) - Facies
## 
##                Df Sum of Sq        RSS   AIC
## - density.corr  1     19799 1675068713 11925
## - phi.N         1   3906205 1678955118 11927
## <none>                      1675048914 11927
## - SP            1  13394190 1688443104 11931
## - R.deep        1  28897686 1703946599 11939
## - caliper       1  29214826 1704263740 11939
## - depth         1  54372650 1729421563 11951
## - ind.deep      1  76022788 1751071701 11961
## - R.med         1  86603706 1761652619 11966
## - ind.med       1  98823752 1773872666 11972
## - density       1 106221406 1781270319 11975
## - phi.core      1 123125117 1798174031 11983
## - gamma         1 416312526 2091361440 12107
## 
## Step:  AIC=11924.92
## k.core ~ depth + caliper + ind.deep + ind.med + gamma + phi.N + 
##     R.deep + R.med + SP + density + phi.core
## 
##            Df Sum of Sq        RSS   AIC
## <none>                  1675068713 11925
## - phi.N     1   4564880 1679633593 11925
## - SP        1  13491079 1688559792 11930
## - R.deep    1  28896144 1703964857 11937
## - caliper   1  29253869 1704322581 11937
## - depth     1  54825159 1729893872 11949
## - ind.deep  1  77573926 1752642639 11960
## - R.med     1  86772220 1761840933 11964
## - ind.med   1 100740701 1775809413 11971
## - density   1 114209586 1789278299 11977
## - phi.core  1 124694278 1799762991 11982
## - gamma     1 417015194 2092083907 12105
summary(model_2)
## 
## Call:
## lm(formula = k.core ~ depth + caliper + ind.deep + ind.med + 
##     gamma + phi.N + R.deep + R.med + SP + density + phi.core, 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5545.3  -753.4  -177.1   576.8 11260.2 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 60910.619  16525.937   3.686 0.000243 ***
## depth          -7.409      1.442  -5.139 3.46e-07 ***
## caliper     -3957.892   1054.270  -3.754 0.000186 ***
## ind.deep      -14.146      2.314  -6.113 1.52e-09 ***
## ind.med        17.263      2.478   6.967 6.74e-12 ***
## gamma         -77.461      5.465 -14.174  < 2e-16 ***
## phi.N       -1825.771   1231.150  -1.483 0.138470    
## R.deep        -25.972      6.961  -3.731 0.000204 ***
## R.med          63.466      9.816   6.466 1.75e-10 ***
## SP             -8.803      3.453  -2.549 0.010974 *  
## density      7980.761   1075.902   7.418 3.02e-13 ***
## phi.core    18343.648   2366.693   7.751 2.75e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1441 on 807 degrees of freedom
## Multiple R-squared:  0.5903, Adjusted R-squared:  0.5847 
## F-statistic: 105.7 on 11 and 807 DF,  p-value: < 2.2e-16
k.predicted_2 <-predict(model_2,data=data)
plot(k.predicted_2,data$k.core)

rmse_2<- RMSE(k.predicted_2,data$k.core )
rmse_2
## [1] 1430.126
model_3<- lm(k.core~ .,data=data)
summary(model_3)
## 
## Call:
## lm(formula = k.core ~ ., data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5585.6  -568.9    49.2   476.5  8928.4 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -6.783e+04  1.760e+04  -3.853 0.000126 ***
## depth         8.544e+00  1.785e+00   4.786 2.02e-06 ***
## caliper       1.413e+03  1.019e+03   1.387 0.165789    
## ind.deep     -2.418e-01  2.354e+00  -0.103 0.918220    
## ind.med       1.224e+00  2.585e+00   0.473 0.636062    
## gamma        -4.583e+01  6.010e+00  -7.626 6.88e-14 ***
## phi.N        -2.010e+03  1.476e+03  -1.362 0.173540    
## R.deep       -2.344e+01  6.288e+00  -3.727 0.000207 ***
## R.med         5.643e+01  9.065e+00   6.225 7.76e-10 ***
## SP           -7.125e+00  3.145e+00  -2.266 0.023736 *  
## density.corr -2.567e+03  4.809e+03  -0.534 0.593602    
## density       2.319e+03  1.173e+03   1.976 0.048458 *  
## phi.core      1.921e+04  2.282e+03   8.418  < 2e-16 ***
## FaciesF10     8.921e+02  3.590e+02   2.485 0.013157 *  
## FaciesF2      9.243e+02  5.818e+02   1.589 0.112514    
## FaciesF3      4.393e+02  3.344e+02   1.313 0.189394    
## FaciesF5      7.411e+02  3.428e+02   2.162 0.030908 *  
## FaciesF7     -4.152e+01  5.742e+02  -0.072 0.942377    
## FaciesF8     -1.179e+03  3.927e+02  -3.002 0.002770 ** 
## FaciesF9     -2.969e+03  4.298e+02  -6.908 1.00e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1262 on 799 degrees of freedom
## Multiple R-squared:  0.6889, Adjusted R-squared:  0.6815 
## F-statistic: 93.12 on 19 and 799 DF,  p-value: < 2.2e-16
k.predicted_3 <-predict(model_3,data=data)
plot(k.predicted_3,data$k.core)

rmse_3<- RMSE(k.predicted_3,data$k.core )
rmse_3
## [1] 1246.201
model_4<-step(model_3 , direction = "backward")
## Start:  AIC=11715.43
## k.core ~ depth + caliper + ind.deep + ind.med + gamma + phi.N + 
##     R.deep + R.med + SP + density.corr + density + phi.core + 
##     Facies
## 
##                Df Sum of Sq        RSS   AIC
## - ind.deep      1     16793 1271937992 11713
## - ind.med       1    356746 1272277945 11714
## - density.corr  1    453661 1272374861 11714
## - phi.N         1   2953609 1274874809 11715
## - caliper       1   3063007 1274984206 11715
## <none>                      1271921199 11715
## - density       1   6217927 1278139127 11717
## - SP            1   8171834 1280093033 11719
## - R.deep        1  22117394 1294038593 11728
## - depth         1  36466976 1308388176 11737
## - R.med         1  61690461 1333611660 11752
## - gamma         1  92579723 1364500923 11771
## - phi.core      1 112793101 1384714301 11783
## - Facies        7 403127714 1675048914 11927
## 
## Step:  AIC=11713.44
## k.core ~ depth + caliper + ind.med + gamma + phi.N + R.deep + 
##     R.med + SP + density.corr + density + phi.core + Facies
## 
##                Df Sum of Sq        RSS   AIC
## - density.corr  1    437546 1272375538 11712
## - phi.N         1   2938766 1274876758 11713
## - caliper       1   3074396 1275012389 11713
## <none>                      1271937992 11713
## - density       1   6228928 1278166920 11715
## - ind.med       1   6905855 1278843848 11716
## - SP            1   8191802 1280129794 11717
## - R.deep        1  22125695 1294063687 11726
## - depth         1  39139470 1311077462 11736
## - R.med         1  61773953 1333711946 11750
## - gamma         1  92865220 1364803212 11769
## - phi.core      1 112960440 1384898432 11781
## - Facies        7 479133709 1751071701 11961
## 
## Step:  AIC=11711.72
## k.core ~ depth + caliper + ind.med + gamma + phi.N + R.deep + 
##     R.med + SP + density + phi.core + Facies
## 
##            Df Sum of Sq        RSS   AIC
## - caliper   1   2980713 1275356252 11712
## <none>                  1272375538 11712
## - phi.N     1   3279032 1275654571 11712
## - density   1   5792837 1278168375 11713
## - ind.med   1   6813959 1279189497 11714
## - SP        1   8391302 1280766840 11715
## - R.deep    1  22009402 1294384940 11724
## - depth     1  38705776 1311081314 11734
## - R.med     1  61436819 1333812357 11748
## - gamma     1  93974329 1366349868 11768
## - phi.core  1 115336515 1387712053 11781
## - Facies    7 480267100 1752642639 11960
## 
## Step:  AIC=11711.64
## k.core ~ depth + ind.med + gamma + phi.N + R.deep + R.med + SP + 
##     density + phi.core + Facies
## 
##            Df Sum of Sq        RSS   AIC
## - phi.N     1   2534906 1277891157 11711
## <none>                  1275356252 11712
## - density   1   7270311 1282626562 11714
## - SP        1   8733336 1284089587 11715
## - ind.med   1  12924050 1288280301 11718
## - R.deep    1  22449117 1297805369 11724
## - depth     1  51507476 1326863728 11742
## - R.med     1  60137982 1335494234 11747
## - phi.core  1 112564835 1387921086 11779
## - gamma     1 141535555 1416891807 11796
## - Facies    7 520094756 1795451008 11978
## 
## Step:  AIC=11711.26
## k.core ~ depth + ind.med + gamma + R.deep + R.med + SP + density + 
##     phi.core + Facies
## 
##            Df Sum of Sq        RSS   AIC
## <none>                  1277891157 11711
## - density   1   5155969 1283047127 11713
## - SP        1   8515796 1286406953 11715
## - ind.med   1  10944937 1288836095 11716
## - R.deep    1  23273312 1301164469 11724
## - depth     1  49725248 1327616405 11740
## - R.med     1  59454645 1337345802 11746
## - phi.core  1 110154394 1388045551 11777
## - gamma     1 219059092 1496950249 11839
## - Facies    7 526383446 1804274603 11980
summary(model_4)
## 
## Call:
## lm(formula = k.core ~ depth + ind.med + gamma + R.deep + R.med + 
##     SP + density + phi.core + Facies, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5608.3  -567.8    35.9   500.7  8989.7 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -4.322e+04  6.625e+03  -6.523 1.22e-10 ***
## depth        6.648e+00  1.189e+00   5.590 3.11e-08 ***
## ind.med      1.078e+00  4.111e-01   2.623 0.008894 ** 
## gamma       -5.324e+01  4.537e+00 -11.733  < 2e-16 ***
## R.deep      -2.395e+01  6.264e+00  -3.824 0.000141 ***
## R.med        5.515e+01  9.022e+00   6.112 1.53e-09 ***
## SP          -7.214e+00  3.118e+00  -2.313 0.020960 *  
## density      1.880e+03  1.044e+03   1.800 0.072240 .  
## phi.core     1.817e+04  2.184e+03   8.320 3.77e-16 ***
## FaciesF10    8.266e+02  3.533e+02   2.340 0.019553 *  
## FaciesF2     7.035e+02  5.567e+02   1.264 0.206697    
## FaciesF3     4.100e+02  3.228e+02   1.270 0.204443    
## FaciesF5     5.913e+02  3.211e+02   1.841 0.065924 .  
## FaciesF7    -3.159e+02  5.402e+02  -0.585 0.558866    
## FaciesF8    -1.455e+03  3.122e+02  -4.661 3.69e-06 ***
## FaciesF9    -3.017e+03  3.764e+02  -8.017 3.82e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1262 on 803 degrees of freedom
## Multiple R-squared:  0.6874, Adjusted R-squared:  0.6816 
## F-statistic: 117.7 on 15 and 803 DF,  p-value: < 2.2e-16
k.predicted_4 <-predict(model_4,data=data)
plot(k.predicted_4,data$k.core)

rmse_4<- RMSE(k.predicted_4,data$k.core )
rmse_4
## [1] 1249.122
data$log10_k.core<-log10(data$k.core)
model_5<- lm(log10_k.core~.-k.core,data=data)
summary(model_5)
## 
## Call:
## lm(formula = log10_k.core ~ . - k.core, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5804 -0.1138  0.0322  0.1529  0.7384 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2.3461877  4.6532000  -0.504  0.61425    
## depth         0.0007425  0.0004718   1.574  0.11596    
## caliper      -0.4605945  0.2693103  -1.710  0.08760 .  
## ind.deep     -0.0007951  0.0006222  -1.278  0.20168    
## ind.med       0.0007137  0.0006833   1.044  0.29659    
## gamma        -0.0091269  0.0015885  -5.746 1.30e-08 ***
## phi.N        -1.7628155  0.3901024  -4.519 7.16e-06 ***
## R.deep       -0.0025878  0.0016620  -1.557  0.11987    
## R.med         0.0044073  0.0023960   1.839  0.06622 .  
## SP           -0.0016935  0.0008312  -2.037  0.04194 *  
## density.corr  1.4462633  1.2712045   1.138  0.25558    
## density       1.6148374  0.3100921   5.208 2.44e-07 ***
## phi.core      9.4863406  0.6032903  15.724  < 2e-16 ***
## FaciesF10     0.0786460  0.0948909   0.829  0.40746    
## FaciesF2     -0.0184334  0.1537793  -0.120  0.90462    
## FaciesF3     -0.0307548  0.0883957  -0.348  0.72799    
## FaciesF5      0.1094193  0.0906034   1.208  0.22753    
## FaciesF7      0.2811620  0.1517797   1.852  0.06433 .  
## FaciesF8     -0.0976234  0.1038054  -0.940  0.34727    
## FaciesF9     -0.3562116  0.1135966  -3.136  0.00178 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3335 on 799 degrees of freedom
## Multiple R-squared:  0.6806, Adjusted R-squared:  0.673 
## F-statistic:  89.6 on 19 and 799 DF,  p-value: < 2.2e-16
log_k.predicted_5 <-predict(model_5,data=data)
k.predicted_5<-10^log_k.predicted_5
plot(k.predicted_5,data$k.core)

rmse_5<- RMSE(k.predicted_5,data$k.core )
rmse_5
## [1] 1333.017
model_6<-step(model_5, direction = "backward")
## Start:  AIC=-1779.02
## log10_k.core ~ (depth + caliper + ind.deep + ind.med + gamma + 
##     phi.N + R.deep + R.med + SP + density.corr + density + phi.core + 
##     k.core + Facies) - k.core
## 
##                Df Sum of Sq     RSS     AIC
## - ind.med       1    0.1213  88.981 -1779.9
## - density.corr  1    0.1440  89.004 -1779.7
## - ind.deep      1    0.1816  89.042 -1779.3
## <none>                       88.860 -1779.0
## - R.deep        1    0.2696  89.130 -1778.5
## - depth         1    0.2754  89.135 -1778.5
## - caliper       1    0.3253  89.185 -1778.0
## - R.med         1    0.3763  89.236 -1777.6
## - SP            1    0.4617  89.322 -1776.8
## - phi.N         1    2.2710  91.131 -1760.3
## - density       1    3.0160  91.876 -1753.7
## - gamma         1    3.6713  92.531 -1747.9
## - Facies        7    7.0758  95.936 -1730.3
## - phi.core      1   27.4982 116.358 -1560.2
## 
## Step:  AIC=-1779.9
## log10_k.core ~ depth + caliper + ind.deep + gamma + phi.N + R.deep + 
##     R.med + SP + density.corr + density + phi.core + Facies
## 
##                Df Sum of Sq     RSS     AIC
## - density.corr  1    0.1931  89.174 -1780.1
## <none>                       88.981 -1779.9
## - ind.deep      1    0.2179  89.199 -1779.9
## - R.deep        1    0.2447  89.226 -1779.7
## - caliper       1    0.2921  89.273 -1779.2
## - R.med         1    0.3397  89.321 -1778.8
## - SP            1    0.4101  89.391 -1778.1
## - depth         1    0.4622  89.444 -1777.7
## - phi.N         1    2.2035  91.185 -1761.9
## - density       1    3.0113  91.993 -1754.6
## - gamma         1    3.5761  92.557 -1749.6
## - Facies        7    9.1242  98.106 -1714.0
## - phi.core      1   27.4190 116.400 -1561.9
## 
## Step:  AIC=-1780.12
## log10_k.core ~ depth + caliper + ind.deep + gamma + phi.N + R.deep + 
##     R.med + SP + density + phi.core + Facies
## 
##            Df Sum of Sq     RSS     AIC
## - ind.deep  1    0.2180  89.392 -1780.1
## <none>                   89.174 -1780.1
## - R.deep    1    0.2526  89.427 -1779.8
## - caliper   1    0.2676  89.442 -1779.7
## - R.med     1    0.3598  89.534 -1778.8
## - SP        1    0.3832  89.558 -1778.6
## - depth     1    0.5404  89.715 -1777.2
## - phi.N     1    2.0726  91.247 -1763.3
## - gamma     1    3.4838  92.658 -1750.7
## - density   1    3.6220  92.796 -1749.5
## - Facies    7    9.3567  98.531 -1712.4
## - phi.core  1   27.2273 116.402 -1563.9
## 
## Step:  AIC=-1780.12
## log10_k.core ~ depth + caliper + gamma + phi.N + R.deep + R.med + 
##     SP + density + phi.core + Facies
## 
##            Df Sum of Sq     RSS     AIC
## <none>                   89.392 -1780.1
## - R.deep    1    0.2869  89.679 -1779.5
## - depth     1    0.3332  89.726 -1779.1
## - SP        1    0.4296  89.822 -1778.2
## - R.med     1    0.5085  89.901 -1777.5
## - caliper   1    0.5746  89.967 -1776.9
## - phi.N     1    2.3337  91.726 -1761.0
## - gamma     1    3.8214  93.214 -1747.8
## - density   1    3.8626  93.255 -1747.5
## - Facies    7    9.2100  98.602 -1713.8
## - phi.core  1   27.0935 116.486 -1565.3
summary(model_6)
## 
## Call:
## lm(formula = log10_k.core ~ depth + caliper + gamma + phi.N + 
##     R.deep + R.med + SP + density + phi.core + Facies, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.58182 -0.12001  0.03437  0.15230  0.70317 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.2671250  3.9316796  -0.322  0.74732    
## depth        0.0006562  0.0003796   1.729  0.08420 .  
## caliper     -0.5608681  0.2470292  -2.270  0.02344 *  
## gamma       -0.0091497  0.0015626  -5.855 6.94e-09 ***
## phi.N       -1.7463527  0.3816550  -4.576 5.50e-06 ***
## R.deep      -0.0026554  0.0016551  -1.604  0.10903    
## R.med        0.0049837  0.0023334   2.136  0.03300 *  
## SP          -0.0016140  0.0008221  -1.963  0.04996 *  
## density      1.7602255  0.2990153   5.887 5.79e-09 ***
## phi.core     9.2753944  0.5949259  15.591  < 2e-16 ***
## FaciesF10    0.0896953  0.0945929   0.948  0.34330    
## FaciesF2     0.0152576  0.1523676   0.100  0.92026    
## FaciesF3    -0.0292379  0.0869197  -0.336  0.73667    
## FaciesF5     0.1022238  0.0879087   1.163  0.24524    
## FaciesF7     0.2794793  0.1462763   1.911  0.05641 .  
## FaciesF8    -0.0932936  0.0927473  -1.006  0.31477    
## FaciesF9    -0.3877078  0.1030388  -3.763  0.00018 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3339 on 802 degrees of freedom
## Multiple R-squared:  0.6787, Adjusted R-squared:  0.6722 
## F-statistic: 105.9 on 16 and 802 DF,  p-value: < 2.2e-16
log_k.predicted_6 <-predict(model_6,data=data)
k.predicted_6<-10^log_k.predicted_6
plot(k.predicted_6,data$k.core)

rmse_6<- RMSE(k.predicted_6,data$k.core )
rmse_6
## [1] 1330.932
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
set.seed(12345)
training<-sample_frac(data, .85)
testing<-anti_join(data,training)
## Joining with `by = join_by(depth, caliper, ind.deep, ind.med, gamma, phi.N,
## R.deep, R.med, SP, density.corr, density, phi.core, k.core, Facies,
## log10_k.core)`
model_7<- lm(log10_k.core~.-k.core,data=training)
summary(model_7)
## 
## Call:
## lm(formula = log10_k.core ~ . - k.core, data = training)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.55995 -0.11992  0.02667  0.14918  0.79179 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -3.4237935  5.1730530  -0.662   0.5083    
## depth         0.0007762  0.0005273   1.472   0.1414    
## caliper      -0.3633176  0.2996156  -1.213   0.2257    
## ind.deep     -0.0008188  0.0006892  -1.188   0.2353    
## ind.med       0.0007516  0.0007563   0.994   0.3207    
## gamma        -0.0081709  0.0017842  -4.580 5.55e-06 ***
## phi.N        -1.8076355  0.4362761  -4.143 3.86e-05 ***
## R.deep       -0.0024741  0.0019142  -1.293   0.1966    
## R.med         0.0043497  0.0027285   1.594   0.1114    
## SP           -0.0020337  0.0009347  -2.176   0.0299 *  
## density.corr  1.9589569  1.3669943   1.433   0.1523    
## density       1.5637995  0.3412012   4.583 5.45e-06 ***
## phi.core      9.7694345  0.6693064  14.596  < 2e-16 ***
## FaciesF10     0.0827951  0.1059007   0.782   0.4346    
## FaciesF2      0.0003785  0.1636079   0.002   0.9982    
## FaciesF3     -0.0582776  0.0997511  -0.584   0.5593    
## FaciesF5      0.1604142  0.1023085   1.568   0.1174    
## FaciesF7      0.3384154  0.1626192   2.081   0.0378 *  
## FaciesF8     -0.0746108  0.1167179  -0.639   0.5229    
## FaciesF9     -0.3339695  0.1293809  -2.581   0.0101 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3403 on 676 degrees of freedom
## Multiple R-squared:  0.6735, Adjusted R-squared:  0.6643 
## F-statistic: 73.39 on 19 and 676 DF,  p-value: < 2.2e-16
log_k.predicted_7 <-predict(model_7,newdata=testing)
k.predicted_7<-10^log_k.predicted_7
plot(k.predicted_7,testing$k.core)

rmse_7<- RMSE(k.predicted_7,testing$k.core )
rmse_7
## [1] 1532.476
model_8<-step(model_7, direction = "backward")
## Start:  AIC=-1480.88
## log10_k.core ~ (depth + caliper + ind.deep + ind.med + gamma + 
##     phi.N + R.deep + R.med + SP + density.corr + density + phi.core + 
##     k.core + Facies) - k.core
## 
##                Df Sum of Sq     RSS     AIC
## - ind.med       1    0.1143  78.385 -1481.9
## - ind.deep      1    0.1634  78.434 -1481.4
## - caliper       1    0.1703  78.441 -1481.4
## - R.deep        1    0.1934  78.464 -1481.2
## <none>                       78.271 -1480.9
## - density.corr  1    0.2378  78.509 -1480.8
## - depth         1    0.2509  78.522 -1480.7
## - R.med         1    0.2942  78.565 -1480.3
## - SP            1    0.5482  78.819 -1478.0
## - phi.N         1    1.9877  80.259 -1465.4
## - gamma         1    2.4283  80.699 -1461.6
## - density       1    2.4322  80.703 -1461.6
## - Facies        7    6.6447  84.915 -1438.2
## - phi.core      1   24.6685 102.939 -1292.2
## 
## Step:  AIC=-1481.87
## log10_k.core ~ depth + caliper + ind.deep + gamma + phi.N + R.deep + 
##     R.med + SP + density.corr + density + phi.core + Facies
## 
##                Df Sum of Sq     RSS     AIC
## - caliper       1    0.1396  78.525 -1482.6
## - ind.deep      1    0.1629  78.548 -1482.4
## - R.deep        1    0.1718  78.557 -1482.3
## <none>                       78.385 -1481.9
## - R.med         1    0.2629  78.648 -1481.5
## - density.corr  1    0.3030  78.688 -1481.2
## - depth         1    0.4251  78.810 -1480.1
## - SP            1    0.4981  78.883 -1479.5
## - phi.N         1    1.9376  80.323 -1466.9
## - gamma         1    2.3378  80.723 -1463.4
## - density       1    2.4420  80.827 -1462.5
## - Facies        7    8.3345  86.720 -1425.5
## - phi.core      1   24.5916 102.977 -1294.0
## 
## Step:  AIC=-1482.63
## log10_k.core ~ depth + ind.deep + gamma + phi.N + R.deep + R.med + 
##     SP + density.corr + density + phi.core + Facies
## 
##                Df Sum of Sq     RSS     AIC
## - R.deep        1    0.1624  78.687 -1483.2
## <none>                       78.525 -1482.6
## - density.corr  1    0.2826  78.807 -1482.1
## - R.med         1    0.2838  78.809 -1482.1
## - ind.deep      1    0.3441  78.869 -1481.6
## - SP            1    0.4740  78.999 -1480.4
## - depth         1    1.7207  80.246 -1469.5
## - phi.N         1    2.1091  80.634 -1466.2
## - density       1    2.3204  80.845 -1464.4
## - gamma         1    2.3213  80.846 -1464.3
## - Facies        7   10.9697  89.495 -1405.6
## - phi.core      1   26.0237 104.548 -1285.4
## 
## Step:  AIC=-1483.19
## log10_k.core ~ depth + ind.deep + gamma + phi.N + R.med + SP + 
##     density.corr + density + phi.core + Facies
## 
##                Df Sum of Sq     RSS     AIC
## - R.med         1    0.2114  78.899 -1483.3
## <none>                       78.687 -1483.2
## - density.corr  1    0.2902  78.977 -1482.6
## - ind.deep      1    0.3772  79.064 -1481.9
## - SP            1    0.3989  79.086 -1481.7
## - depth         1    1.5754  80.263 -1471.4
## - phi.N         1    2.1916  80.879 -1466.1
## - density       1    2.2126  80.900 -1465.9
## - gamma         1    2.2378  80.925 -1465.7
## - Facies        7   10.8841  89.571 -1407.0
## - phi.core      1   26.7527 105.440 -1281.5
## 
## Step:  AIC=-1483.32
## log10_k.core ~ depth + ind.deep + gamma + phi.N + SP + density.corr + 
##     density + phi.core + Facies
## 
##                Df Sum of Sq     RSS     AIC
## <none>                       78.899 -1483.3
## - density.corr  1    0.3244  79.223 -1482.5
## - SP            1    0.4742  79.373 -1481.2
## - ind.deep      1    1.0834  79.982 -1475.8
## - depth         1    1.5004  80.399 -1472.2
## - phi.N         1    2.0105  80.909 -1467.8
## - density       1    2.1651  81.064 -1466.5
## - gamma         1    2.6736  81.572 -1462.1
## - Facies        7   11.5449  90.443 -1402.3
## - phi.core      1   27.9665 106.865 -1274.2
summary(model_8)
## 
## Call:
## lm(formula = log10_k.core ~ depth + ind.deep + gamma + phi.N + 
##     SP + density.corr + density + phi.core + Facies, data = training)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.59286 -0.12697  0.02428  0.16308  0.76938 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -8.954e+00  1.936e+00  -4.625 4.49e-06 ***
## depth         1.221e-03  3.396e-04   3.596 0.000347 ***
## ind.deep     -2.877e-04  9.414e-05  -3.056 0.002334 ** 
## gamma        -7.399e-03  1.541e-03  -4.800 1.95e-06 ***
## phi.N        -1.761e+00  4.231e-01  -4.163 3.55e-05 ***
## SP           -1.839e-03  9.099e-04  -2.022 0.043611 *  
## density.corr  2.249e+00  1.345e+00   1.672 0.094983 .  
## density       1.448e+00  3.351e-01   4.320 1.79e-05 ***
## phi.core      1.008e+01  6.495e-01  15.525  < 2e-16 ***
## FaciesF10     8.584e-02  1.047e-01   0.820 0.412766    
## FaciesF2     -1.892e-02  1.623e-01  -0.117 0.907197    
## FaciesF3     -8.946e-02  9.690e-02  -0.923 0.356242    
## FaciesF5      1.905e-01  9.626e-02   1.979 0.048233 *  
## FaciesF7      3.158e-01  1.563e-01   2.021 0.043675 *  
## FaciesF8     -8.928e-02  1.065e-01  -0.838 0.402088    
## FaciesF9     -3.691e-01  1.140e-01  -3.237 0.001267 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3406 on 680 degrees of freedom
## Multiple R-squared:  0.6709, Adjusted R-squared:  0.6636 
## F-statistic:  92.4 on 15 and 680 DF,  p-value: < 2.2e-16
log_k.predicted_8 <-predict(model_8,newdata=testing)
k.predicted_8<-10^log_k.predicted_8
plot(k.predicted_8,testing$k.core)

rmse_8<- RMSE(k.predicted_8,testing$k.core )
rmse_8
## [1] 1581.705