EC3133
2024-11-29
\[ f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
\[ P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} \]
\[ f(x) = \frac{\beta^\alpha x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)} \]
\[ f(x) = \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(\ln x-\mu)^2}{2\sigma^2}} \]
\[ f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \leq x \leq b \\ 0 & \text{otherwise} \end{cases} \]
How do we choose the right distribution?
plot(daily_temps, type = 'l', main = 'Daily Temperatures for a Month',
xlab = 'Day', ylab = 'Temperature (°F)')## Monthly expenses: 1831.857 1930.947 2467.612 2021.153 2038.786 2514.519 \
## Estimated average monthly spending: 2134.146
## True support: 52 %\
## Poll estimate: 53.2 %