library(rio)
data=import("dataOK_all.Xlsx")
## New names:
## • `` -> `...1`
head(data)
##   ...1                           key Código pared1_Ladrillo pared2_Piedra
## 1    1                AMAZONAS+BAGUA    102            4633            46
## 2    2              AMAZONAS+BONGARA    103            1602             9
## 3    3          AMAZONAS+CHACHAPOYAS    101            3782            22
## 4    4         AMAZONAS+CONDORCANQUI    104             291             7
## 5    5                 AMAZONAS+LUYA    105             430             7
## 6    6 AMAZONAS+RODRIGUEZ DE MENDOZA    106            1546             7
##   pared3_Adobe pared4_Tapia pared5_Quincha pared6_Piedra pared7_Madera
## 1         6639          222           2518           127          4484
## 2         2729          240            157            36          2505
## 3         5881         2476            309           168          1270
## 4          672            8            386             7          8145
## 5         5217         6052            346            54           606
## 6         2778          155            720            28          3646
##   pared8_Triplay pared9_Otro pared10_Total techo1_Concreto techo2_Madera
## 1            851           0         19520            2187           294
## 2             30           0          7308             692            75
## 3             91           0         13999            2262           160
## 4            200           0          9716              56           188
## 5             45           0         12757             187            43
## 6             24           0          8904             480            48
##   techo3_Tejas techo4_Planchas techo5_Caña techo6_Triplay techo7_Paja
## 1          179           13186         160            106        3408
## 2          382            6084          38              5          32
## 3         3393            8005          50             14         115
## 4          177            2036          15             10        7234
## 5         3071            9343          26             12          75
## 6         2810            5495          15              5          51
##   techo8_Otro techo9_Total piso1_Parquet piso2_Láminas piso3_Losetas
## 1           0        19520             6            19           647
## 2           0         7308             5             2           165
## 3           0        13999            23            36          1077
## 4           0         9716             2             0            20
## 5           0        12757             4             0            46
## 6           0         8904             3             4           264
##   piso4_Madera piso5_Cemento piso6_Tierra piso7_Otro piso8_Total agua1_Red
## 1          157          7121        11569          1       19520      9429
## 2          132          2917         4087          0        7308      4569
## 3          240          6189         6434          0       13999     10647
## 4         1523           943         7228          0        9716      1307
## 5          295          1911        10501          0       12757      7172
## 6          176          2974         5483          0        8904      5256
##   agua2_Red_fueraVivienda agua3_Pilón agua4_Camión agua5_Pozo agua6_Manantial
## 1                    4392         793           59       1792             270
## 2                    1497         215            0        474              67
## 3                    1619         184           49        876              92
## 4                     867        1003            2       2564             431
## 5                    3097        1112            0        819             132
## 6                    1278         154            0       1020             211
##   agua7_Río agua8_Otro agua9_Vecino agua10_Total elec1_Sí elec2_No elec3_Total
## 1      2648         56           81        19520    13204     6316       19520
## 2       388         61           37         7308     6025     1283        7308
## 3       488         24           20        13999    12248     1751       13999
## 4      3428         80           34         9716     1792     7924        9716
## 5       369          9           47        12757    10886     1871       12757
## 6       948         29            8         8904     6895     2009        8904
##   departamento            provincia Castillo Keiko ganaCastillo covidPositivos
## 1     AMAZONAS                BAGUA    25629 10770            1           8126
## 2     AMAZONAS              BONGARA     8374  5209            1            389
## 3     AMAZONAS          CHACHAPOYAS    15671 10473            1           2174
## 4     AMAZONAS         CONDORCANQUI    13154  1446            1           3481
## 5     AMAZONAS                 LUYA    12606  7840            1            456
## 6     AMAZONAS RODRÍGUEZ DE MENDOZA     7967  5491            1            110
##   covidFallecidos
## 1             462
## 2              72
## 3             281
## 4             111
## 5              88
## 6              60
data <- na.omit(data)
str(data)
## 'data.frame':    196 obs. of  50 variables:
##  $ ...1                   : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ key                    : chr  "AMAZONAS+BAGUA" "AMAZONAS+BONGARA" "AMAZONAS+CHACHAPOYAS" "AMAZONAS+CONDORCANQUI" ...
##  $ Código                 : num  102 103 101 104 105 106 107 202 203 204 ...
##  $ pared1_Ladrillo        : num  4633 1602 3782 291 430 ...
##  $ pared2_Piedra          : num  46 9 22 7 7 7 35 1 0 3 ...
##  $ pared3_Adobe           : num  6639 2729 5881 672 5217 ...
##  $ pared4_Tapia           : num  222 240 2476 8 6052 ...
##  $ pared5_Quincha         : num  2518 157 309 386 346 ...
##  $ pared6_Piedra          : num  127 36 168 7 54 28 518 65 7 6 ...
##  $ pared7_Madera          : num  4484 2505 1270 8145 606 ...
##  $ pared8_Triplay         : num  851 30 91 200 45 24 210 18 0 1 ...
##  $ pared9_Otro            : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ pared10_Total          : num  19520 7308 13999 9716 12757 ...
##  $ techo1_Concreto        : num  2187 692 2262 56 187 ...
##  $ techo2_Madera          : num  294 75 160 188 43 48 340 57 12 8 ...
##  $ techo3_Tejas           : num  179 382 3393 177 3071 ...
##  $ techo4_Planchas        : num  13186 6084 8005 2036 9343 ...
##  $ techo5_Caña            : num  160 38 50 15 26 15 196 10 8 5 ...
##  $ techo6_Triplay         : num  106 5 14 10 12 5 62 17 4 3 ...
##  $ techo7_Paja            : num  3408 32 115 7234 75 ...
##  $ techo8_Otro            : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ techo9_Total           : num  19520 7308 13999 9716 12757 ...
##  $ piso1_Parquet          : num  6 5 23 2 4 3 20 0 0 5 ...
##  $ piso2_Láminas          : num  19 2 36 0 0 4 32 0 0 1 ...
##  $ piso3_Losetas          : num  647 165 1077 20 46 ...
##  $ piso4_Madera           : num  157 132 240 1523 295 ...
##  $ piso5_Cemento          : num  7121 2917 6189 943 1911 ...
##  $ piso6_Tierra           : num  11569 4087 6434 7228 10501 ...
##  $ piso7_Otro             : num  1 0 0 0 0 0 0 0 0 0 ...
##  $ piso8_Total            : num  19520 7308 13999 9716 12757 ...
##  $ agua1_Red              : num  9429 4569 10647 1307 7172 ...
##  $ agua2_Red_fueraVivienda: num  4392 1497 1619 867 3097 ...
##  $ agua3_Pilón            : num  793 215 184 1003 1112 ...
##  $ agua4_Camión           : num  59 0 49 2 0 0 117 0 0 0 ...
##  $ agua5_Pozo             : num  1792 474 876 2564 819 ...
##  $ agua6_Manantial        : num  270 67 92 431 132 211 471 121 61 27 ...
##  $ agua7_Río              : num  2648 388 488 3428 369 ...
##  $ agua8_Otro             : num  56 61 24 80 9 29 104 2 1 6 ...
##  $ agua9_Vecino           : num  81 37 20 34 47 8 177 9 4 6 ...
##  $ agua10_Total           : num  19520 7308 13999 9716 12757 ...
##  $ elec1_Sí               : num  13204 6025 12248 1792 10886 ...
##  $ elec2_No               : num  6316 1283 1751 7924 1871 ...
##  $ elec3_Total            : num  19520 7308 13999 9716 12757 ...
##  $ departamento           : chr  "AMAZONAS" "AMAZONAS" "AMAZONAS" "AMAZONAS" ...
##  $ provincia              : chr  "BAGUA" "BONGARA" "CHACHAPOYAS" "CONDORCANQUI" ...
##  $ Castillo               : num  25629 8374 15671 13154 12606 ...
##  $ Keiko                  : num  10770 5209 10473 1446 7840 ...
##  $ ganaCastillo           : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ covidPositivos         : num  8126 389 2174 3481 456 ...
##  $ covidFallecidos        : num  462 72 281 111 88 60 336 26 31 21 ...
data['% viviendas_con_agua_redpublica'] = (data['agua1_Red'] / data['agua10_Total']) * 100
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
data <- data %>%
  mutate(RazonKEIKO_CASTILLO = Keiko / Castillo)
library(dplyr)

data <- data %>%
  mutate(Tasa = (covidFallecidos / covidPositivos) * 1000)
library(dplyr)

datos_sin_lima <- data %>%
  filter(provincia != "LIMA")
boxplot(datos_sin_lima[,c(51:53)], method='standardize',horizontal = F,las=2,cex.axis = 0.5)

cor(datos_sin_lima[,c(51:53)])
##                                 % viviendas_con_agua_redpublica
## % viviendas_con_agua_redpublica                       1.0000000
## RazonKEIKO_CASTILLO                                   0.1195803
## Tasa                                                  0.1035734
##                                 RazonKEIKO_CASTILLO        Tasa
## % viviendas_con_agua_redpublica          0.11958032  0.10357342
## RazonKEIKO_CASTILLO                      1.00000000 -0.09694139
## Tasa                                    -0.09694139  1.00000000
library(dplyr)
dataClus=datos_sin_lima[,c(51:53)]
row.names(dataClus)=datos_sin_lima$provincia
library(cluster)
g.dist = daisy(dataClus, metric="gower")
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(ggplot2)
fviz_nbclust(dataClus, pam,diss=g.dist,method = "gap_stat",k.max = 10,verbose = F)

library(kableExtra)
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
set.seed(123)
res.pam=pam(g.dist,1,cluster.only = F)

#nueva columna
dataClus$pam=res.pam$cluster

# ver

head(dataClus,15)%>%kbl()%>%kable_styling()
% viviendas_con_agua_redpublica RazonKEIKO_CASTILLO Tasa pam
BAGUA 48.30430 0.4202271 56.85454 1
BONGARA 62.52053 0.6220444 185.08997 1
CHACHAPOYAS 76.05543 0.6683045 129.25483 1
CONDORCANQUI 13.45204 0.1099285 31.88739 1
LUYA 56.22011 0.6219261 192.98246 1
RODRÍGUEZ DE MENDOZA 59.02965 0.6892180 545.45455 1
UTCUBAMBA 48.71039 0.5260536 89.62390 1
AIJA 74.75528 0.6077419 329.11392 1
ANTONIO RAYMONDI 85.28790 0.1558544 574.07407 1
ASUNCIÓN 71.32928 0.2891608 355.93220 1
BOLOGNESI 72.30859 0.5193758 396.69421 1
CARHUAZ 73.07544 0.4573771 295.28986 1
CARLOS FERMÍN FITZCARRALD 66.24904 0.2626122 607.14286 1
CASMA 60.43541 1.3723517 375.90862 1
CORONGO 75.16049 0.6715731 513.51351 1
silPAM=data.frame(res.pam$silinfo$widths)
silPAM$country_name=row.names(silPAM)
poorPAM=silPAM[silPAM$sil_width<0,'provincia']%>%sort()
poorPAM
## NULL
#fviz_silhouette(res.pam,print.summary = F)
fviz_nbclust(dataClus, hcut,diss=g.dist,method = "gap_stat",k.max = 10,verbose = F,hc_func = "agnes")

set.seed(123)
library(factoextra)

res.agnes<- hcut(g.dist, k = 1,hc_func='agnes',hc_method = "ward.D")

dataClus$agnes=res.agnes$cluster

# ver

head(dataClus,15)%>%kbl()%>%kable_styling()
% viviendas_con_agua_redpublica RazonKEIKO_CASTILLO Tasa pam agnes
BAGUA 48.30430 0.4202271 56.85454 1 1
BONGARA 62.52053 0.6220444 185.08997 1 1
CHACHAPOYAS 76.05543 0.6683045 129.25483 1 1
CONDORCANQUI 13.45204 0.1099285 31.88739 1 1
LUYA 56.22011 0.6219261 192.98246 1 1
RODRÍGUEZ DE MENDOZA 59.02965 0.6892180 545.45455 1 1
UTCUBAMBA 48.71039 0.5260536 89.62390 1 1
AIJA 74.75528 0.6077419 329.11392 1 1
ANTONIO RAYMONDI 85.28790 0.1558544 574.07407 1 1
ASUNCIÓN 71.32928 0.2891608 355.93220 1 1
BOLOGNESI 72.30859 0.5193758 396.69421 1 1
CARHUAZ 73.07544 0.4573771 295.28986 1 1
CARLOS FERMÍN FITZCARRALD 66.24904 0.2626122 607.14286 1 1
CASMA 60.43541 1.3723517 375.90862 1 1
CORONGO 75.16049 0.6715731 513.51351 1 1
silAGNES=data.frame(res.agnes$silinfo$widths)
silAGNES$country=row.names(silAGNES)
poorAGNES=silAGNES[silAGNES$sil_width<0,'provincia']%>%sort()
poorAGNES
## NULL
#fviz_silhouette(res.agnes,print.summary = F)
fviz_nbclust(dataClus, hcut,diss=g.dist,method = "gap_stat",k.max = 10,verbose = F,hc_func = "diana")

set.seed(123)
res.diana <- hcut(g.dist, k = 1,hc_func='diana')
dataClus$diana=res.diana$cluster
# veamos
head(dataClus,150)%>%kbl%>%kable_styling()
% viviendas_con_agua_redpublica RazonKEIKO_CASTILLO Tasa pam agnes diana
BAGUA 48.304303 0.4202271 56.85454 1 1 1
BONGARA 62.520525 0.6220444 185.08997 1 1 1
CHACHAPOYAS 76.055432 0.6683045 129.25483 1 1 1
CONDORCANQUI 13.452038 0.1099285 31.88739 1 1 1
LUYA 56.220114 0.6219261 192.98246 1 1 1
RODRÍGUEZ DE MENDOZA 59.029650 0.6892180 545.45455 1 1 1
UTCUBAMBA 48.710393 0.5260536 89.62390 1 1 1
AIJA 74.755281 0.6077419 329.11392 1 1 1
ANTONIO RAYMONDI 85.287903 0.1558544 574.07407 1 1 1
ASUNCIÓN 71.329279 0.2891608 355.93220 1 1 1
BOLOGNESI 72.308595 0.5193758 396.69421 1 1 1
CARHUAZ 73.075444 0.4573771 295.28986 1 1 1
CARLOS FERMÍN FITZCARRALD 66.249036 0.2626122 607.14286 1 1 1
CASMA 60.435410 1.3723517 375.90862 1 1 1
CORONGO 75.160494 0.6715731 513.51351 1 1 1
HUARAZ 81.149992 0.5661629 167.18588 1 1 1
HUARI 80.850787 0.2461527 560.00000 1 1 1
HUARMEY 64.756230 1.2108647 151.68897 1 1 1
HUAYLAS 66.396818 1.0606972 202.05479 1 1 1
MARISCAL LUZURIAGA 37.689040 0.1942026 279.06977 1 1 1
OCROS 57.826599 1.0529842 301.20482 1 1 1
PALLASCA 73.458236 0.3696148 975.90361 1 1 1
POMABAMBA 61.376728 0.2844439 265.36313 1 1 1
RECUAY 66.463415 0.3644416 233.12883 1 1 1
SANTA 72.928390 1.0465242 252.26473 1 1 1
SIHUAS 62.757175 0.3581546 276.00000 1 1 1
YUNGAY 65.807536 0.4717077 326.38889 1 1 1
ABANCAY 68.205772 0.3471464 151.01850 1 1 1
ANDAHUAYLAS 59.121772 0.2073769 290.02193 1 1 1
ANTABAMBA 28.909595 0.1897019 464.28571 1 1 1
AYMARAES 53.799604 0.2510340 380.00000 1 1 1
CHINCHEROS 65.432007 0.1989793 467.04871 1 1 1
COTABAMBAS 46.206326 0.0978689 204.58265 1 1 1
GRAU 7.133685 0.1520148 574.80315 1 1 1
AREQUIPA 74.813441 0.5886095 209.12356 1 1 1
CAMANÁ 68.610312 0.6884061 319.16427 1 1 1
CARAVELÍ 56.758130 1.1201615 301.69051 1 1 1
CASTILLA 77.025956 0.3192157 310.16043 1 1 1
CAYLLOMA 57.597393 0.1612449 283.32404 1 1 1
CONDESUYOS 45.183203 0.2194998 278.38828 1 1 1
ISLAY 79.099345 0.4034536 271.04377 1 1 1
LA UNIÓN 65.040075 0.1635849 779.66102 1 1 1
CANGALLO 60.932179 0.1224750 342.10526 1 1 1
HUAMANGA 75.055539 0.2153937 130.42613 1 1 1
HUANCA SANCOS 70.488981 0.1327329 272.72727 1 1 1
HUANTA 62.340212 0.2046569 158.05627 1 1 1
LA MAR 55.598286 0.1736800 185.30351 1 1 1
LUCANAS 62.349206 0.3739643 263.29442 1 1 1
PARINACOCHAS 70.882656 0.2217028 175.62254 1 1 1
PÁUCAR DEL SARA SARA 86.100386 0.3700426 282.72251 1 1 1
SUCRE 38.548820 0.3039416 1055.55556 1 1 1
VÍCTOR FAJARDO 64.642263 0.1108062 309.64467 1 1 1
VILCAS HUAMÁN 57.529776 0.1740456 532.60870 1 1 1
CAJABAMBA 49.781594 0.7951866 357.14286 1 1 1
CAJAMARCA 71.117636 0.6957371 180.94622 1 1 1
CELENDÍN 50.995878 0.2391852 511.73709 1 1 1
CHOTA 40.106251 0.1676515 299.80080 1 1 1
CONTUMAZÁ 59.835221 0.6437295 466.36771 1 1 1
CUTERVO 42.253994 0.3680159 260.57143 1 1 1
HUALGAYOC 34.909991 0.1070236 156.87919 1 1 1
JAÉN 60.014835 0.4289170 122.87614 1 1 1
SAN IGNACIO 36.382069 0.2684679 122.97872 1 1 1
SAN MARCOS 57.000823 0.3584337 460.37736 1 1 1
SAN MIGUEL 48.238877 0.4068323 372.43402 1 1 1
SAN PABLO 70.255930 0.2651058 329.26829 1 1 1
SANTA CRUZ 49.640479 0.3927163 276.16279 1 1 1
CALLAO 78.614492 2.0697924 264.59022 1 1 1
ACOMAYO 69.630702 0.0752867 397.16312 1 1 1
ANTA 50.421846 0.1335659 421.68675 1 1 1
CALCA 49.551533 0.1417012 423.78049 1 1 1
CANAS 39.224261 0.0460008 720.58824 1 1 1
CANCHIS 75.596944 0.0903048 381.42748 1 1 1
CHUMBIVILCAS 40.392252 0.0379983 533.33333 1 1 1
CUSCO 80.128668 0.3979290 158.57509 1 1 1
ESPINAR 43.961137 0.0844538 158.38150 1 1 1
LA CONVENCIÓN 41.494362 0.1825468 171.05653 1 1 1
PARURO 49.619843 0.0866401 694.44444 1 1 1
PAUCARTAMBO 23.273979 0.0812639 514.28571 1 1 1
QUISPICANCHI 46.889059 0.1147212 515.94203 1 1 1
URUBAMBA 72.571687 0.1562634 399.63834 1 1 1
ACOBAMBA 60.735923 0.1477964 216.66667 1 1 1
ANGARAES 48.758320 0.1275789 189.37644 1 1 1
CASTROVIRREYNA 43.481686 0.4782047 234.69388 1 1 1
CHURCAMPA 40.646627 0.1875499 201.68067 1 1 1
HUANCAVELICA 61.752606 0.1363864 134.49074 1 1 1
HUAYTARÁ 33.188383 0.4825835 269.23077 1 1 1
TAYACAJA 57.255274 0.1873777 192.20999 1 1 1
AMBO 44.498641 0.4777200 283.89155 1 1 1
DOS DE MAYO 44.260057 0.2389210 300.54645 1 1 1
HUACAYBAMBA 56.198547 0.2019061 187.50000 1 1 1
HUAMALÍES 51.428378 0.2100158 204.22535 1 1 1
HUÁNUCO 56.213964 0.5645689 145.80981 1 1 1
LAURICOCHA 13.791842 0.1675688 866.66667 1 1 1
LEONCIO PRADO 46.431935 0.8396717 357.83133 1 1 1
MARAÑÓN 36.468763 0.4439911 131.94444 1 1 1
PACHITEA 27.781123 0.2230469 174.02597 1 1 1
PUERTO INCA 16.641851 0.6230355 46.68305 1 1 1
YAROWILCA 27.659575 0.1031227 318.18182 1 1 1
CHINCHA 74.724332 1.1374797 474.33930 1 1 1
ICA 75.377321 1.1269777 258.90222 1 1 1
NAZCA 56.146743 1.0376981 288.25911 1 1 1
PALPA 69.777024 0.9940707 162.30366 1 1 1
PISCO 77.275893 1.0422555 258.49411 1 1 1
CHANCHAMAYO 56.555276 0.8721607 249.10851 1 1 1
CHUPACA 74.053561 0.4682792 198.26590 1 1 1
CONCEPCIÓN 72.551454 0.7603576 343.24324 1 1 1
HUANCAYO 83.596437 0.6609567 283.78576 1 1 1
JAUJA 78.413781 0.9410858 540.24052 1 1 1
JUNÍN 70.100162 0.4679828 261.81818 1 1 1
SATIPO 34.209847 0.7983922 116.63849 1 1 1
TARMA 70.400320 0.9432162 501.20482 1 1 1
YAULI 72.849883 0.4825304 296.10829 1 1 1
ASCOPE 81.023151 1.5004035 421.12421 1 1 1
BOLÍVAR 56.293797 0.6294719 1222.22222 1 1 1
CHEPÉN 75.522693 1.2978227 317.68650 1 1 1
GRAN CHIMÚ 35.566414 2.1461447 149.90138 1 1 1
JULCÁN 28.690557 0.7859714 333.33333 1 1 1
OTUZCO 51.398222 0.9036741 227.37819 1 1 1
PACASMAYO 80.497294 1.3401658 481.50470 1 1 1
PATAZ 56.550355 0.7262353 145.09804 1 1 1
SÁNCHEZ CARRIÓN 49.197229 0.9640443 126.22549 1 1 1
SANTIAGO DE CHUCO 51.228096 0.7775074 235.95506 1 1 1
TRUJILLO 80.792443 1.9738840 292.82248 1 1 1
VIRÚ 74.647952 0.7782213 310.90652 1 1 1
CHICLAYO 83.054120 1.4803134 307.95371 1 1 1
FERREÑAFE 62.463488 0.9478664 202.71467 1 1 1
LAMBAYEQUE 59.261009 1.3191430 246.00264 1 1 1
BARRANCA 83.029953 1.2662657 259.48187 1 1 1
CAJATAMBO 65.493284 1.2171190 1742.85714 1 1 1
CAÑETE 68.828033 1.2069838 296.64812 1 1 1
CANTA 60.234987 0.9217826 228.11671 1 1 1
HUARAL 70.963774 1.2992243 224.55001 1 1 1
HUAROCHIRÍ 56.616303 0.8827611 374.67866 1 1 1
HUAURA 71.023371 1.1551929 274.28800 1 1 1
OYÓN 57.703993 0.8062910 853.21101 1 1 1
YAUYOS 63.963696 0.6868542 411.01695 1 1 1
ALTO AMAZONAS 46.898130 0.4496530 176.61488 1 1 1
DATEM DEL MARAÑÓN 4.925032 0.4871108 49.30468 1 1 1
LORETO 10.854486 1.2223729 47.92043 1 1 1
MARISCAL RAMÓN CASTILLA 15.522734 2.4747246 110.86798 1 1 1
MAYNAS 63.633149 1.2412949 244.18431 1 1 1
PUTUMAYO 4.593640 1.9345455 19.08714 1 1 1
REQUENA 19.858039 1.8000000 128.65497 1 1 1
UCAYALI 29.382737 0.7369900 197.40260 1 1 1
MANU 28.077203 0.2643328 79.15994 1 1 1
TAHUAMANU 45.533915 0.5501803 52.07329 1 1 1
TAMBOPATA 65.607713 0.4149462 99.60913 1 1 1
GENERAL SÁNCHEZ CERRO 33.676423 0.1816794 129.67033 1 1 1
ILO 81.072306 0.5475932 178.31638 1 1 1
MARISCAL NIETO 74.004445 0.2738522 78.14680 1 1 1
#fviz_silhouette(res.diana,print.summary = F)
silDIANA=data.frame(res.diana$silinfo$widths)
silDIANA$country=row.names(silDIANA)
poorDIANA=silDIANA[silDIANA$sil_width<0,'provincia']%>%sort()
poorDIANA
## NULL