Aisha Karamustafic
2024-11-27
I took a RStudio course during my Fall 2024 semester at Middle Tennessee State University about how to graph, analyze, and map election-related data using RStudio and the R programming language. Below are some examples of the projects I worked on throughout the class.
GRAPHI stands for “gross rent as a percentage of income.” It is used as a statistic to measure how affordable monthly rent is in an area. Financial experts recommend spending no more than 30% of ones pre-tax household income on rent. This map and table shows the proportion of renters in each Tennessee House of Representative district who spend 35% or more of their household income on gross rent, which includes utilities and rent.
Data comes from the 2022 five-year American Community Survey, published by the U.S. Census Bureau.
| Estimate by district | ||||
| District | Estimate | Estimate_MOE | From | To |
|---|---|---|---|---|
| State House District 13 (2022), Tennessee | 42.9 | 7.7 | 35.2 | 50.6 |
| State House District 37 (2022), Tennessee | 40.3 | 5.5 | 34.8 | 45.8 |
| State House District 34 (2022), Tennessee | 35.9 | 4.8 | 31.1 | 40.7 |
| State House District 49 (2022), Tennessee | 35.7 | 5.6 | 30.1 | 41.3 |
| State House District 48 (2022), Tennessee | 34.4 | 5.9 | 28.5 | 40.3 |
Here is the code used to produce the map.
# Installing and loading required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("tidycensus"))
install.packages("tidycensus")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("gtExtras"))
install.packages("gtExtras")
library(tidyverse)
library(tidycensus)
library(sf)
library(mapview)
library(gtExtras)
# Transmitting API key
census_api_key("PasteYourAPIKeyBetweenTheseQuoteMarks")
# Fetching ACS codebooks
DetailedTables <- load_variables(2022, "acs5", cache = TRUE)
SubjectTables <- load_variables(2022, "acs5/subject", cache = TRUE)
ProfileTables <- load_variables(2022, "acs5/profile", cache = TRUE)
Codebook <- DetailedTables %>%
select(name, label, concept)
Codebook <- bind_rows(Codebook,SubjectTables)
Codebook <- bind_rows(Codebook,ProfileTables)
Codebook <- Codebook %>%
distinct(label, .keep_all = TRUE)
rm(DetailedTables,
SubjectTables,
ProfileTables)
# Filtering the codebook
MyVars <- Codebook %>%
filter(grepl("GRAPI", label) &
grepl("Percent!!", label))
# Making a table of the filtered variables
MyVarsTable <- gt(MyVars) %>%
tab_header("Variables") %>%
cols_align(align = "left") %>%
gt_theme_538
# Displaying the table
MyVarsTable
# Defining the variable to retrieve
VariableList =
c(Estimate_ = "DP04_0142P")
# Fetching data
AllData <- get_acs(
geography = "state legislative district (lower chamber)",
state = "TN",
variables = VariableList,
year = 2022,
survey = "acs5",
output = "wide",
geometry = TRUE
)
# Mutating, selecting and sorting the data
AllData <- AllData %>%
mutate(
District = NAME,
Estimate = Estimate_E,
Estimate_MOE = Estimate_M,
From = round(Estimate - Estimate_MOE, 2),
To = round(Estimate + Estimate_MOE, 2)
) %>%
select(District, Estimate, Estimate_MOE, From, To, geometry) %>%
arrange(desc(Estimate))
# Filtering for Rutherford County districts
MyData <- AllData %>%
filter(
District == "State House District 13 (2022), Tennessee" |
District == "State House District 37 (2022), Tennessee" |
District == "State House District 49 (2022), Tennessee" |
District == "State House District 48 (2022), Tennessee" |
District == "State House District 34 (2022), Tennessee"
)
# Producing a map
MapData <- st_as_sf(MyData)
MyMap <- mapview(MapData,
zcol = "Estimate",
layer.name = "Estimate",
popup = TRUE)
#Displaying the map
MyMap
# Producing a table
TableData <- st_drop_geometry(MapData)
MyTable <- gt(TableData) %>%
tab_header("Estimate by district") %>%
cols_align(align = "left") %>%
gt_theme_538
# Displaying the table
MyTable
Early voting for the 2024 election cycle was held from October 16th to October 31st in Rutherford County. This map displays the early voting locations in the county with operation hours.
# Required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
library(tidyverse)
library(sf)
library(mapview)
library(leaflet)
library(leaflet.extras2)
library(leafpop)
mapviewOptions(basemaps.color.shuffle = FALSE)
# Load the address and lat/long data
Addresses_gc <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/EarlyVotingLocations_gc.csv")
# Add MTSU
long <- -86.361861
lat <- 35.848997
Addresses_gc <- Addresses_gc %>%
add_row(Location = "MTSU",
long = long,
lat = lat) %>%
mutate(Point = case_when(Location == "MTSU" ~ "MTSU",
TRUE ~ "Early vote here"))
MapData <- st_as_sf(Addresses_gc,
coords = c("long", "lat"),
crs = 4326)
# Make the map
MyMap <- mapview(MapData,
zcol = "Point",
layer.name = "Point",
col.regions = c("orange", "blue"),
map.types = c("OpenStreetMap","Esri.WorldImagery"),
popup = popupTable(
MapData,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("Location",
"Address",
"Week",
"Weekend")))
# Show the map
MyMap
By the last day of early voting (Oct. 31), Rutherford County had 115,133 people turn out to vote. That is about 51 percent of all registered voters in the county.
This map shows the amount of votes cast per day during the early voting period and which precincts held the most early voters.
Data from the Rutherford County Election Commission.Early Voting in Rutherford County
By the last day of early voting (Oct. 31), Rutherford County had 115,133 people turn out to vote. That is about 51 percent of all registered voters in the county.
This map shows the amount of votes cast per day during the early voting period and which precincts held the most early voters.
Data from the Rutherford County Election Commission.
Here is the code to display the chart and the map.
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("foreign"))
install.packages("foreign")
if (!require("sf"))
install.packages("sf")
if (!require("scales"))
install.packages("scales")
if (!require("mapview"))
install.packages("mapview")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
library(tidyverse)
library(foreign)
library(sf)
library(scales)
library(mapview)
library(leaflet)
library(leafpop)
# Read the first data file and use it to create
# an "AllData" dataframe.
AddData <- read.dbf("10162024.dbf")
AllData <- AddData
# Add each subsequent day's file name to this list,
# then run
datafiles <- c("10172024.dbf",
"10182024.dbf",
"10192024.dbf",
"10212024.dbf",
"10222024.dbf",
"10232024.dbf")
# This "for loop" adds each listed datafile
# to the AllData dataframe
for (x in datafiles) {
AddData <- read.dbf(x, as.is = FALSE)
AllData <- rbind(AllData, AddData)
}
# Save AllData file as .csv
write_csv(AllData,"EarlyVoterData2024.csv")
TotalVotes <- nrow(AllData)
PctVotes <- round((TotalVotes / 224746)*100, digits = 0)
### Make a chart showing vote totals by day ###
# Aggregate data by day
# and do some formatting
VotesByDay <- AllData %>%
group_by(VOTEDDATE) %>%
summarize(Votes = n()) %>%
rename(Date = VOTEDDATE) %>%
mutate(Date = (str_remove(Date,"2024-")))
# Make the chart
chart = ggplot(data = VotesByDay,
aes(x = Date,
y = Votes))+
geom_bar(stat="identity", fill = "#41B3A2") +
geom_text(aes(label=comma(Votes)),
vjust=1.6,
color="black",
size=3.5)+
theme(
axis.title.x = element_blank(),
axis.ticks.y = element_blank(),
axis.title.y = element_blank(),
axis.text.y = element_blank(),
panel.background = element_blank())
# Show the chart
chart
### Make a precinct-level map of early voting turnout ***
# Aggregate early voting data by precinct
PrecinctData <- AllData %>%
group_by(PCT_NBR) %>%
summarize(Votes = n()) %>%
rename(Precinct = PCT_NBR)
# Download and unzip a precinct map to pair with the vote data
download.file("https://github.com/drkblake/Data/raw/main/Voting_Precincts_5_31_24.zip","TNVotingPrecincts.zip")
unzip("TNVotingPrecincts.zip")
# Read the unzipped data into an All_Precincts dataframe
All_Precincts <- read_sf("Voting_Precincts_5_31_24.shp")
# Filter for RuCo precincts,
# strip dash from precinct numbers,
# and do some renaming
County_Precincts <- All_Precincts %>%
filter(COUNTY == 149) %>%
rename(Precinct = NEWVOTINGP) %>%
mutate(Precinct = (str_remove(Precinct,"-")))
# Use left_join() function to join the data and map file
# using the "Precinct" variable as the joining key
MapData <- left_join(PrecinctData, County_Precincts, by = "Precinct")
# Use left_join() again, this time to add
# voter registration totals per precinct
# This file was in the .zip file along with
# the daily .dbf files
RegData <- read_csv("RegVotersRuCo.csv") %>%
mutate(Precinct = as.character(Precinct))
MapData <- left_join(MapData, RegData, by = "Precinct")
# Calculate and add Percent column
# Then select columns to keep
# and put them in a MapData dataframe
MapData <- MapData %>%
mutate(Percent = round((Votes/RegVoters)*100), digits = 0) %>%
rename(Voters = RegVoters) %>%
select(Precinct, Votes, Voters, Percent, geometry)
# Make a mappable MapData_sf file out of MapData
MapData_sf <- st_as_sf(MapData)
# Make the map
Map <- mapview(
MapData_sf,
zcol = "Percent",
layer.name = "Pct. early voted",
popup = popupTable(
MapData_sf,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c(
"Precinct",
"Votes",
"Voters",
"Percent"
)
)
)
# Show the map
Map
# Calculate some additional voting stats
MinTurnout <- min(MapData$Percent)
MaxTurnout <- max(MapData$Percent)
MedianTurnout <- median(MapData$Percent)
MeanTurnout <- mean(MapData$Percent)
These are interactive plotly charts lets you compare the amount of cable news coverage mentioning “Donald Trump,” “Joe Biden,” and “Kamala Harris” between late April and mid-October.
Here is a graph of MSNBC coverage.
Here is a graph of CNN’s coverage.
Here is a map of FOX’s coverage.
As you may have noticed, the cable networks that lean right have less coverage of Donald Trump compared to networks like CNN and MSNBC that lean left. Similarly, CNN and MSNBC have less coverage of Joe Biden and Kamala Harris compared to FOX, which is more notably right leaning.
Here is the code used to display these plotly maps.
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("plotly"))
install.packages("plotly")
library(tidyverse)
library(plotly)
# Defining date range
startdate <- "20240429"
enddate <- "20241112"
### Trump
# Defining query
# Note:
# In queries, use %20 to indicate a space
# Example: "Donald%20Trump" is "Donald Trump"
# Use parentheses and %20OR%20 for "either/or" queries
# Example: "(Harris%20OR%20Walz)" is "(Harris OR Walz)"
query <- "Donald%20Trump"
# Building the volume dataframe
vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Trump <- read_csv(v_url)
Trump <- Trump %>%
rename(Date = 1, Trump = 3)
### Biden
# Defining query
query <- "Joe%20Biden"
# Building the volume dataframe
vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Biden <- read_csv(v_url)
Biden <- Biden %>%
rename(Date = 1, Biden = 3)
AllData <- left_join(Trump, Biden)
### Harris
# Defining query
query <- "Kamala%20Harris"
# Building the volume dataframe
vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Harris <- read_csv(v_url)
Harris <- Harris %>%
rename(Date = 1, Harris = 3)
AllData <- left_join(AllData, Harris)
### Graphic
AllData <- AllData %>%
arrange(Date)
# Add "WeekOf" variable to the data frame
if (!require("lubridate"))
install.packages("lubridate")
library(lubridate)
AllData$WeekOf <- round_date(AllData$Date,
unit = "week",
week_start = getOption("lubridate.week.start", 1))
CombinedCoverage <- AllData %>%
group_by(WeekOf) %>%
summarize(
Trump = sum(Trump, na.rm = TRUE),
Biden = sum(Biden, na.rm = TRUE),
Harris = sum(Harris, na.rm = TRUE)
)
fig <- plot_ly(
CombinedCoverage,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
fig <- fig %>% add_trace(y = ~ Biden,
name = 'Biden',
fillcolor = '#507687')
fig <- fig %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
fig <- fig %>% layout(
title = 'Segment counts, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
fig
### Results for MSNBC, CNN, and Fox News, separately
# MSNBC
MSNBC <- AllData %>%
filter(Series == "MSNBC")
figMSNBC <- plot_ly(
MSNBC,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
figMSNBC <- figMSNBC %>% add_trace(y = ~ Biden,
name = 'Biden',
fillcolor = '#507687')
figMSNBC <- figMSNBC %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
figMSNBC <- figMSNBC %>% layout(
title = 'Segment counts, MSNBC, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
figMSNBC
# CNN
CNN <- AllData %>%
filter(Series == "CNN")
figCNN <- plot_ly(
CNN,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
figCNN <- figCNN %>% add_trace(y = ~ Biden,
name = 'Biden',
fillcolor = '#507687')
figCNN <- figCNN %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
figCNN <- figCNN %>% layout(
title = 'Segment counts, CNN, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
figCNN
#Fox News
FoxNews <- AllData %>%
filter(Series == "FOXNEWS")
figFox <- plot_ly(
FoxNews,
x = ~ WeekOf,
y = ~ Trump,
name = 'Trump',
type = 'scatter',
mode = 'none',
stackgroup = 'one',
fillcolor = '#B8001F')
figFox <- figFox %>% add_trace(y = ~ Biden,
name = 'Biden',
fillcolor = '#507687')
figFox <- figFox %>% add_trace(y = ~ Harris,
name = 'Harris',
fillcolor = '#384B70')
figFox <- figFox %>% layout(
title = 'Segment counts, Fox News, by topic and week',
xaxis = list(title = "Week of", showgrid = FALSE),
yaxis = list(title = "Count", showgrid = TRUE)
)
figFox
Here is the code used to create this map and chart.
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("tidycensus"))
install.packages("tidycensus")
if (!require("sf"))
install.packages("sf")
if (!require("mapview"))
install.packages("mapview")
if (!require("DataEditR"))
install.packages("DataEditR")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
if (!require("plotly"))
install.packages("plotly")
library(tidyverse)
library(tidycensus)
library(sf)
library(mapview)
library(DataEditR)
library(leaflet)
library(leafpop)
library(plotly)
# Getting a U.S.map shapefile
# Note: Provide your Census API key in the line below
census_api_key("PasteYourAPIKeyBetweenTheseQuoteMarks")
# U.S. Map
omit <- c("Alaska", "Puerto Rico", "Hawaii")
USMap <- get_acs(
geography = "state",
variables = "DP02_0154P",
year = 2022,
survey = "acs5",
output = "wide",
geometry = TRUE) %>%
filter(!(NAME %in% omit)) %>%
mutate(Full = NAME) %>%
select(GEOID, Full, geometry)
st_write(USMap,"USMap.shp", append = FALSE)
# Data file
USData <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/ElectoralVotesByState2024.csv")
# Edit / update election data
USData <- data_edit(USData)
write_csv(USData,"ElectoralVotesByState2024.csv")
write_csv(USData,"ElectoralVotesByState2024_latest.csv")
# Merge election and map data
USWinners <- merge(USMap,USData) %>%
mutate(Winner = (case_when(
Harris > Trump ~ "Harris",
Trump > Harris ~ "Trump",
.default = "Counting"))) %>%
mutate(Votes = Votes.to.allocate) %>%
select(State, Votes, Harris, Trump, Winner, geometry)
# Make the election map
USpalette = colorRampPalette(c("darkblue","darkred"))
BigMap <- mapview(USWinners, zcol = "Winner",
col.regions = USpalette,
alpha.regions = .8,
layer.name = "Winner",
popup = popupTable(
USWinners,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c(
"State",
"Votes",
"Harris",
"Trump",
"Winner")))
# Showing the map
BigMap
# Make the electoral vote tracker
# Loading the data from a local .csv file
AllData <- read.csv("ElectoralVotesByState2024.csv")
AllData <- AllData %>%
arrange(State)
# Formatting and transforming the data for plotting
MyData <- AllData %>%
select(State, Votes.to.allocate,
Unallocated, Harris, Trump) %>%
arrange(State)
MyData <- MyData %>%
pivot_longer(cols=c(-State),names_to="Candidate")%>%
pivot_wider(names_from=c(State)) %>%
filter(Candidate == "Harris" |
Candidate == "Trump" |
Candidate == "Unallocated") %>%
arrange(Candidate)
MyData <- MyData %>%
mutate(total = rowSums(.[2:52]))
# Formatting a horizontal line for the plot
hline <- function(y = 0, color = "darkgray") {
list(
type = "line",
x0 = 0,
x1 = 1,
xref = "paper",
y0 = y,
y1 = y,
line = list(color = color)
)
}
# Producing the plot
fig <- plot_ly(
MyData,
x = ~ Candidate,
y = ~ AK,
legend = FALSE,
marker = list(color = c("384B70", "B8001F", "gray")),
type = 'bar',
name = 'AK'
) %>%
add_annotations(
visible = "legendonly",
x = ~ Candidate,
y = ~ (total + 20),
text = ~ total,
showarrow = FALSE,
textfont = list(size = 50)
)
fig <- fig %>% add_trace(y = ~ DE, name = 'DE')
fig <- fig %>% add_trace(y = ~ DC, name = 'DC')
fig <- fig %>% add_trace(y = ~ MT, name = 'MT')
fig <- fig %>% add_trace(y = ~ ND, name = 'ND')
fig <- fig %>% add_trace(y = ~ SD, name = 'SD')
fig <- fig %>% add_trace(y = ~ VT, name = 'VT')
fig <- fig %>% add_trace(y = ~ WY, name = 'WY')
fig <- fig %>% add_trace(y = ~ HI, name = 'HI')
fig <- fig %>% add_trace(y = ~ ID, name = 'ID')
fig <- fig %>% add_trace(y = ~ ME, name = 'ME')
fig <- fig %>% add_trace(y = ~ NH, name = 'NH')
fig <- fig %>% add_trace(y = ~ RI, name = 'RI')
fig <- fig %>% add_trace(y = ~ NE, name = 'NE')
fig <- fig %>% add_trace(y = ~ NM, name = 'NM')
fig <- fig %>% add_trace(y = ~ WV, name = 'WV')
fig <- fig %>% add_trace(y = ~ AR, name = 'AR')
fig <- fig %>% add_trace(y = ~ IA, name = 'IA')
fig <- fig %>% add_trace(y = ~ KS, name = 'KS')
fig <- fig %>% add_trace(y = ~ MS, name = 'MS')
fig <- fig %>% add_trace(y = ~ NV, name = 'NV')
fig <- fig %>% add_trace(y = ~ UT, name = 'UT')
fig <- fig %>% add_trace(y = ~ CT, name = 'CT')
fig <- fig %>% add_trace(y = ~ OK, name = 'OK')
fig <- fig %>% add_trace(y = ~ OR, name = 'OR')
fig <- fig %>% add_trace(y = ~ KY, name = 'KY')
fig <- fig %>% add_trace(y = ~ LA, name = 'LA')
fig <- fig %>% add_trace(y = ~ AL, name = 'AL')
fig <- fig %>% add_trace(y = ~ CO, name = 'CO')
fig <- fig %>% add_trace(y = ~ SC, name = 'SC')
fig <- fig %>% add_trace(y = ~ MD, name = 'MD')
fig <- fig %>% add_trace(y = ~ MN, name = 'MN')
fig <- fig %>% add_trace(y = ~ MO, name = 'MO')
fig <- fig %>% add_trace(y = ~ WI, name = 'WI')
fig <- fig %>% add_trace(y = ~ AZ, name = 'AZ')
fig <- fig %>% add_trace(y = ~ IN, name = 'IN')
fig <- fig %>% add_trace(y = ~ MA, name = 'MA')
fig <- fig %>% add_trace(y = ~ TN, name = 'TN')
fig <- fig %>% add_trace(y = ~ WA, name = 'WA')
fig <- fig %>% add_trace(y = ~ VA, name = 'VA')
fig <- fig %>% add_trace(y = ~ NJ, name = 'NJ')
fig <- fig %>% add_trace(y = ~ NC, name = 'NC')
fig <- fig %>% add_trace(y = ~ GA, name = 'GA')
fig <- fig %>% add_trace(y = ~ MI, name = 'MI')
fig <- fig %>% add_trace(y = ~ OH, name = 'OH')
fig <- fig %>% add_trace(y = ~ IL, name = 'IL')
fig <- fig %>% add_trace(y = ~ PA, name = 'PA')
fig <- fig %>% add_trace(y = ~ FL, name = 'FL')
fig <- fig %>% add_trace(y = ~ NY, name = 'NY')
fig <- fig %>% add_trace(y = ~ TX, name = 'TX')
fig <- fig %>% add_trace(y = ~ CA, name = 'CA')
fig <- fig %>% layout(yaxis = list(title = 'Electoral votes'),
barmode = 'stack',
showlegend = FALSE,
shapes = list(hline(270)))
# Showing the plot
fig
Tennessee was given to Donald Trump (Republican) in both the 2020 and 2024 presidential races. This map analysis suggests he won in different ways each time.
You can explore the maps below to compare the two elections in terms of Republican and Democratic county-level gains and losses compared to the preceding presidential race.
To use the map:
Here is the 2020 map.
Here is the 2024 map.