R Project Portfolio

Aisha Karamustafic

2024-11-27

Intro

I took a RStudio course during my Fall 2024 semester at Middle Tennessee State University about how to graph, analyze, and map election-related data using RStudio and the R programming language. Below are some examples of the projects I worked on throughout the class.


GRAPHI by Tennessee House District

GRAPHI stands for “gross rent as a percentage of income.” It is used as a statistic to measure how affordable monthly rent is in an area. Financial experts recommend spending no more than 30% of ones pre-tax household income on rent. This map and table shows the proportion of renters in each Tennessee House of Representative district who spend 35% or more of their household income on gross rent, which includes utilities and rent.

Data comes from the 2022 five-year American Community Survey, published by the U.S. Census Bureau.

Portion of renters overspending on housing, by Tennessee District

Estimate by district
District Estimate Estimate_MOE From To
State House District 13 (2022), Tennessee 42.9 7.7 35.2 50.6
State House District 37 (2022), Tennessee 40.3 5.5 34.8 45.8
State House District 34 (2022), Tennessee 35.9 4.8 31.1 40.7
State House District 49 (2022), Tennessee 35.7 5.6 30.1 41.3
State House District 48 (2022), Tennessee 34.4 5.9 28.5 40.3

Here is the code used to produce the map.

# Installing and loading required packages

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("tidycensus"))
  install.packages("tidycensus")
if (!require("sf"))
  install.packages("sf")
if (!require("mapview"))
  install.packages("mapview")
if (!require("gtExtras"))
  install.packages("gtExtras")

library(tidyverse)
library(tidycensus)
library(sf)
library(mapview)
library(gtExtras)

# Transmitting API key

census_api_key("PasteYourAPIKeyBetweenTheseQuoteMarks")

# Fetching ACS codebooks

DetailedTables <- load_variables(2022, "acs5", cache = TRUE)
SubjectTables <- load_variables(2022, "acs5/subject", cache = TRUE)
ProfileTables <- load_variables(2022, "acs5/profile", cache = TRUE)
Codebook <- DetailedTables %>% 
  select(name, label, concept)
Codebook <- bind_rows(Codebook,SubjectTables)
Codebook <- bind_rows(Codebook,ProfileTables)
Codebook <- Codebook %>% 
  distinct(label, .keep_all = TRUE)
rm(DetailedTables,
   SubjectTables,
   ProfileTables)

# Filtering the codebook

MyVars <- Codebook %>% 
  filter(grepl("GRAPI", label) &
           grepl("Percent!!", label))

# Making a table of the filtered variables

MyVarsTable <- gt(MyVars) %>%
  tab_header("Variables") %>%
  cols_align(align = "left") %>%
  gt_theme_538

# Displaying the table

MyVarsTable

# Defining the variable to retrieve

VariableList = 
  c(Estimate_ = "DP04_0142P")

# Fetching data

AllData <- get_acs(
  geography = "state legislative district (lower chamber)",
  state = "TN",
  variables = VariableList,
  year = 2022,
  survey = "acs5",
  output = "wide",
  geometry = TRUE
)

# Mutating, selecting and sorting the data

AllData <- AllData %>%
  mutate(
    District = NAME,
    Estimate = Estimate_E,
    Estimate_MOE = Estimate_M,
    From = round(Estimate - Estimate_MOE, 2),
    To = round(Estimate + Estimate_MOE, 2)
  ) %>%
  select(District, Estimate, Estimate_MOE, From, To, geometry) %>%
  arrange(desc(Estimate))

# Filtering for Rutherford County districts

MyData <- AllData %>%
  filter(
    District == "State House District 13 (2022), Tennessee" |
      District == "State House District 37 (2022), Tennessee" |
      District == "State House District 49 (2022), Tennessee" |
      District == "State House District 48 (2022), Tennessee" |
      District == "State House District 34 (2022), Tennessee"
  )

# Producing a map

MapData <- st_as_sf(MyData)

MyMap <- mapview(MapData,
        zcol = "Estimate",
        layer.name = "Estimate",
        popup = TRUE)
#Displaying the map

MyMap

# Producing a table

TableData <- st_drop_geometry(MapData)
MyTable <- gt(TableData) %>%
  tab_header("Estimate by district") %>%
  cols_align(align = "left") %>%
  gt_theme_538

# Displaying the table

MyTable

Early Voting Location Map

Early voting for the 2024 election cycle was held from October 16th to October 31st in Rutherford County. This map displays the early voting locations in the county with operation hours.

# Required packages

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("sf"))
  install.packages("sf")
if (!require("mapview"))
  install.packages("mapview")
if (!require("leaflet")) 
  install.packages("leaflet")
if (!require("leaflet.extras2")) 
  install.packages("leaflet.extras2")

library(tidyverse)
library(sf)
library(mapview)
library(leaflet)
library(leaflet.extras2)
library(leafpop)

mapviewOptions(basemaps.color.shuffle = FALSE)

# Load the address and lat/long data

Addresses_gc <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/EarlyVotingLocations_gc.csv")

# Add MTSU

long <- -86.361861
lat <- 35.848997

Addresses_gc <- Addresses_gc %>% 
  add_row(Location = "MTSU",
          long = long,
          lat = lat) %>% 
  mutate(Point = case_when(Location == "MTSU" ~ "MTSU",
                           TRUE ~ "Early vote here"))

MapData <- st_as_sf(Addresses_gc,
                    coords = c("long", "lat"),
                    crs = 4326)

# Make the map

MyMap <- mapview(MapData,
                 zcol = "Point",
                 layer.name = "Point",
                 col.regions = c("orange", "blue"),
                 map.types = c("OpenStreetMap","Esri.WorldImagery"),
                 popup = popupTable(
                   MapData,
                   feature.id = FALSE,
                   row.numbers = FALSE,
                   zcol = c("Location",
                            "Address",
                            "Week",
                            "Weekend")))
# Show the map

MyMap

Early Voting in Rutherford County

By the last day of early voting (Oct. 31), Rutherford County had 115,133 people turn out to vote. That is about 51 percent of all registered voters in the county.

This map shows the amount of votes cast per day during the early voting period and which precincts held the most early voters.

Data from the Rutherford County Election Commission.Early Voting in Rutherford County

By the last day of early voting (Oct. 31), Rutherford County had 115,133 people turn out to vote. That is about 51 percent of all registered voters in the county.

This map shows the amount of votes cast per day during the early voting period and which precincts held the most early voters.

Data from the Rutherford County Election Commission.

Here is the code to display the chart and the map.

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("foreign"))
  install.packages("foreign")
if (!require("sf"))
  install.packages("sf")
if (!require("scales"))
  install.packages("scales")
if (!require("mapview"))
  install.packages("mapview")
if (!require("leaflet"))
  install.packages("leaflet")
if (!require("leaflet.extras2"))
  install.packages("leaflet.extras2")

library(tidyverse)
library(foreign)
library(sf)
library(scales)
library(mapview)
library(leaflet)
library(leafpop)

# Read the first data file and use it to create
# an "AllData" dataframe.

AddData <- read.dbf("10162024.dbf")
AllData <- AddData

# Add each subsequent day's file name to this list,
# then run

datafiles <- c("10172024.dbf",
               "10182024.dbf",
               "10192024.dbf",
               "10212024.dbf",
               "10222024.dbf",
               "10232024.dbf")

# This "for loop" adds each listed datafile
# to the AllData dataframe

for (x in datafiles) {
  AddData <- read.dbf(x, as.is = FALSE)
  AllData <- rbind(AllData, AddData)
}

# Save AllData file as .csv
write_csv(AllData,"EarlyVoterData2024.csv")

TotalVotes <- nrow(AllData)
PctVotes <- round((TotalVotes / 224746)*100, digits = 0)

### Make a chart showing vote totals by day ###

# Aggregate data by day
# and do some formatting

VotesByDay <- AllData %>% 
  group_by(VOTEDDATE) %>% 
  summarize(Votes = n()) %>% 
  rename(Date = VOTEDDATE) %>% 
  mutate(Date = (str_remove(Date,"2024-")))

# Make the chart

chart = ggplot(data = VotesByDay,
               aes(x = Date,
                   y = Votes))+
  geom_bar(stat="identity", fill = "#41B3A2") +
  geom_text(aes(label=comma(Votes)),
            vjust=1.6,
            color="black",
            size=3.5)+
  theme(
    axis.title.x = element_blank(),
    axis.ticks.y = element_blank(),
    axis.title.y = element_blank(),
    axis.text.y = element_blank(),
    panel.background = element_blank())

# Show the chart

chart

### Make a precinct-level map of early voting turnout ***

# Aggregate early voting data by precinct

PrecinctData <- AllData %>% 
  group_by(PCT_NBR) %>% 
  summarize(Votes = n()) %>% 
  rename(Precinct = PCT_NBR)

# Download and unzip a precinct map to pair with the vote data

download.file("https://github.com/drkblake/Data/raw/main/Voting_Precincts_5_31_24.zip","TNVotingPrecincts.zip")

unzip("TNVotingPrecincts.zip")

# Read the unzipped data into an All_Precincts dataframe

All_Precincts <- read_sf("Voting_Precincts_5_31_24.shp")

# Filter for RuCo precincts, 
# strip dash from precinct numbers,
# and do some renaming

County_Precincts <- All_Precincts %>%
  filter(COUNTY == 149) %>%
  rename(Precinct = NEWVOTINGP) %>% 
  mutate(Precinct = (str_remove(Precinct,"-")))

# Use left_join() function to join the data and map file
# using the "Precinct" variable as the joining key

MapData <-  left_join(PrecinctData, County_Precincts, by = "Precinct")

# Use left_join() again, this time to add
# voter registration totals per precinct
# This file was in the .zip file along with
# the daily .dbf files

RegData <- read_csv("RegVotersRuCo.csv") %>% 
  mutate(Precinct = as.character(Precinct))

MapData <- left_join(MapData, RegData, by = "Precinct")

# Calculate and add Percent column
# Then select columns to keep
# and put them in a MapData dataframe

MapData <- MapData %>% 
  mutate(Percent = round((Votes/RegVoters)*100), digits = 0) %>%
  rename(Voters = RegVoters) %>% 
  select(Precinct, Votes, Voters, Percent, geometry)

# Make a mappable MapData_sf file out of MapData

MapData_sf <- st_as_sf(MapData)

# Make the map

Map <- mapview(
  MapData_sf,
  zcol = "Percent",
  layer.name = "Pct. early voted",
  popup = popupTable(
    MapData_sf,
    feature.id = FALSE,
    row.numbers = FALSE,
    zcol = c(
      "Precinct",
      "Votes",
      "Voters",
      "Percent"
    )
  )
)

# Show the map

Map

# Calculate some additional voting stats

MinTurnout <- min(MapData$Percent)
MaxTurnout <- max(MapData$Percent)
MedianTurnout <- median(MapData$Percent)
MeanTurnout <- mean(MapData$Percent)

Cable News Topic Tracker

These are interactive plotly charts lets you compare the amount of cable news coverage mentioning “Donald Trump,” “Joe Biden,” and “Kamala Harris” between late April and mid-October.

Here is a graph of MSNBC coverage.

Here is a graph of CNN’s coverage.

Here is a map of FOX’s coverage.

As you may have noticed, the cable networks that lean right have less coverage of Donald Trump compared to networks like CNN and MSNBC that lean left. Similarly, CNN and MSNBC have less coverage of Joe Biden and Kamala Harris compared to FOX, which is more notably right leaning.

Here is the code used to display these plotly maps.

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("plotly"))
  install.packages("plotly")
library(tidyverse)
library(plotly)

# Defining date range

startdate <- "20240429"
enddate <- "20241112"

### Trump

# Defining query

# Note:
# In queries, use %20 to indicate a space
# Example: "Donald%20Trump" is "Donald Trump"
# Use parentheses and %20OR%20 for "either/or" queries
# Example: "(Harris%20OR%20Walz)" is "(Harris OR Walz)"

query <- "Donald%20Trump"

# Building the volume dataframe

vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Trump <- read_csv(v_url)
Trump <- Trump %>%
  rename(Date = 1, Trump = 3)

### Biden

# Defining query

query <- "Joe%20Biden"

# Building the volume dataframe

vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Biden <- read_csv(v_url)
Biden <- Biden %>%
  rename(Date = 1, Biden = 3)

AllData <- left_join(Trump, Biden)

### Harris

# Defining query

query <- "Kamala%20Harris"

# Building the volume dataframe

vp1 <- "https://api.gdeltproject.org/api/v2/tv/tv?query="
vp2 <- "%20market:%22National%22&mode=timelinevol&format=csv&datanorm=raw&startdatetime="
vp3 <- "000000&enddatetime="
vp4 <- "000000"
text_v_url <- paste0(vp1, query, vp2, startdate, vp3, enddate, vp4)
v_url <- URLencode(text_v_url)
v_url
Harris <- read_csv(v_url)
Harris <- Harris %>%
  rename(Date = 1, Harris = 3)

AllData <- left_join(AllData, Harris)

### Graphic

AllData <- AllData %>%
  arrange(Date)

# Add "WeekOf" variable to the data frame

if (!require("lubridate"))
  install.packages("lubridate")
library(lubridate)

AllData$WeekOf <- round_date(AllData$Date,
                             unit = "week",
                             week_start = getOption("lubridate.week.start", 1))

CombinedCoverage <- AllData %>%
  group_by(WeekOf) %>%
  summarize(
    Trump = sum(Trump, na.rm = TRUE),
    Biden = sum(Biden, na.rm = TRUE),
    Harris = sum(Harris, na.rm = TRUE)
  )

fig <- plot_ly(
  CombinedCoverage,
  x = ~ WeekOf,
  y = ~ Trump,
  name = 'Trump',
  type = 'scatter',
  mode = 'none',
  stackgroup = 'one',
  fillcolor = '#B8001F')
fig <- fig %>% add_trace(y = ~ Biden,
                         name = 'Biden',
                         fillcolor = '#507687')

fig <- fig %>% add_trace(y = ~ Harris,
                         name = 'Harris',
                         fillcolor = '#384B70')
fig <- fig %>% layout(
  title = 'Segment counts, by topic and week',
  xaxis = list(title = "Week of", showgrid = FALSE),
  yaxis = list(title = "Count", showgrid = TRUE)
)

fig

### Results for MSNBC, CNN, and Fox News, separately

# MSNBC

MSNBC <- AllData %>%
  filter(Series == "MSNBC")
figMSNBC <- plot_ly(
  MSNBC,
  x = ~ WeekOf,
  y = ~ Trump,
  name = 'Trump',
  type = 'scatter',
  mode = 'none',
  stackgroup = 'one',
  fillcolor = '#B8001F')
figMSNBC <- figMSNBC %>% add_trace(y = ~ Biden,
                                   name = 'Biden',
                                   fillcolor = '#507687')
figMSNBC <- figMSNBC %>% add_trace(y = ~ Harris,
                                   name = 'Harris',
                                   fillcolor = '#384B70')
figMSNBC <- figMSNBC %>% layout(
  title = 'Segment counts, MSNBC, by topic and week',
  xaxis = list(title = "Week of", showgrid = FALSE),
  yaxis = list(title = "Count", showgrid = TRUE)
)

figMSNBC

# CNN

CNN <- AllData %>%
  filter(Series == "CNN")
figCNN <- plot_ly(
  CNN,
  x = ~ WeekOf,
  y = ~ Trump,
  name = 'Trump',
  type = 'scatter',
  mode = 'none',
  stackgroup = 'one',
  fillcolor = '#B8001F')
figCNN <- figCNN %>% add_trace(y = ~ Biden,
                               name = 'Biden',
                               fillcolor = '#507687')
figCNN <- figCNN %>% add_trace(y = ~ Harris,
                               name = 'Harris',
                               fillcolor = '#384B70')
figCNN <- figCNN %>% layout(
  title = 'Segment counts, CNN, by topic and week',
  xaxis = list(title = "Week of", showgrid = FALSE),
  yaxis = list(title = "Count", showgrid = TRUE)
)

figCNN

#Fox News

FoxNews <- AllData %>%
  filter(Series == "FOXNEWS")
figFox <- plot_ly(
  FoxNews,
  x = ~ WeekOf,
  y = ~ Trump,
  name = 'Trump',
  type = 'scatter',
  mode = 'none',
  stackgroup = 'one',
  fillcolor = '#B8001F')
figFox <- figFox %>% add_trace(y = ~ Biden,
                               name = 'Biden',
                               fillcolor = '#507687')
figFox <- figFox %>% add_trace(y = ~ Harris,
                               name = 'Harris',
                               fillcolor = '#384B70')
figFox <- figFox %>% layout(
  title = 'Segment counts, Fox News, by topic and week',
  xaxis = list(title = "Week of", showgrid = FALSE),
  yaxis = list(title = "Count", showgrid = TRUE)
)

figFox

Electoral Votes, 2024 Presidential Election

Electoral Vote Map

Electoral votes by candidate

Here is the code used to create this map and chart.

if (!require("tidyverse"))
  install.packages("tidyverse")
if (!require("tidycensus"))
  install.packages("tidycensus")
if (!require("sf"))
  install.packages("sf")
if (!require("mapview"))
  install.packages("mapview")
if (!require("DataEditR"))
  install.packages("DataEditR")
if (!require("leaflet"))
  install.packages("leaflet")
if (!require("leaflet.extras2"))
  install.packages("leaflet.extras2")
if (!require("plotly"))
  install.packages("plotly")

library(tidyverse)
library(tidycensus)
library(sf)
library(mapview)
library(DataEditR)
library(leaflet)
library(leafpop)
library(plotly)

# Getting a U.S.map shapefile

# Note: Provide your Census API key in the line below

census_api_key("PasteYourAPIKeyBetweenTheseQuoteMarks")

# U.S. Map

omit <- c("Alaska", "Puerto Rico", "Hawaii")
USMap <- get_acs(
  geography = "state",
  variables = "DP02_0154P",
  year = 2022,
  survey = "acs5",
  output = "wide",
  geometry = TRUE) %>%
  filter(!(NAME %in% omit)) %>%
  mutate(Full = NAME) %>%
  select(GEOID, Full, geometry)
st_write(USMap,"USMap.shp", append = FALSE)

# Data file

USData <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/ElectoralVotesByState2024.csv")

# Edit / update election data

USData <- data_edit(USData)
write_csv(USData,"ElectoralVotesByState2024.csv")
write_csv(USData,"ElectoralVotesByState2024_latest.csv")
          
# Merge election and map data

USWinners <- merge(USMap,USData) %>% 
  mutate(Winner = (case_when(
    Harris > Trump ~ "Harris",
    Trump > Harris ~ "Trump",
    .default = "Counting"))) %>%
  mutate(Votes = Votes.to.allocate) %>% 
  select(State, Votes, Harris, Trump, Winner, geometry)

# Make the election map

USpalette = colorRampPalette(c("darkblue","darkred"))

BigMap <- mapview(USWinners, zcol = "Winner",
        col.regions = USpalette,
        alpha.regions = .8,
        layer.name = "Winner",
        popup = popupTable(
          USWinners,
          feature.id = FALSE,
          row.numbers = FALSE,
          zcol = c(
            "State",
            "Votes",
            "Harris",
            "Trump",
            "Winner")))

# Showing the map

BigMap

# Make the electoral vote tracker

# Loading the data from a local .csv file

AllData <- read.csv("ElectoralVotesByState2024.csv")
AllData <- AllData %>%
  arrange(State)

# Formatting and transforming the data for plotting

MyData <- AllData %>%
  select(State, Votes.to.allocate,
         Unallocated, Harris, Trump) %>% 
  arrange(State)

MyData <- MyData %>%
  pivot_longer(cols=c(-State),names_to="Candidate")%>%
  pivot_wider(names_from=c(State)) %>%
  filter(Candidate == "Harris" |
           Candidate == "Trump" |
           Candidate == "Unallocated") %>%
  arrange(Candidate)

MyData <- MyData %>% 
  mutate(total = rowSums(.[2:52]))

# Formatting a horizontal line for the plot

hline <- function(y = 0, color = "darkgray") {
  list(
    type = "line",
    x0 = 0,
    x1 = 1,
    xref = "paper",
    y0 = y,
    y1 = y,
    line = list(color = color)
  )
}

# Producing the plot

fig <- plot_ly(
  MyData,
  x = ~ Candidate,
  y = ~ AK,
  legend = FALSE,
  marker = list(color = c("384B70", "B8001F", "gray")),
  type = 'bar',
  name = 'AK'
) %>% 
  add_annotations(
    visible = "legendonly",
    x = ~ Candidate,
    y = ~ (total + 20),
    text = ~ total,
    showarrow = FALSE,
    textfont = list(size = 50)
  ) 
fig <- fig %>% add_trace(y = ~ DE, name = 'DE')
fig <- fig %>% add_trace(y = ~ DC, name = 'DC')
fig <- fig %>% add_trace(y = ~ MT, name = 'MT')
fig <- fig %>% add_trace(y = ~ ND, name = 'ND')
fig <- fig %>% add_trace(y = ~ SD, name = 'SD')
fig <- fig %>% add_trace(y = ~ VT, name = 'VT')
fig <- fig %>% add_trace(y = ~ WY, name = 'WY')
fig <- fig %>% add_trace(y = ~ HI, name = 'HI')
fig <- fig %>% add_trace(y = ~ ID, name = 'ID')
fig <- fig %>% add_trace(y = ~ ME, name = 'ME')
fig <- fig %>% add_trace(y = ~ NH, name = 'NH')
fig <- fig %>% add_trace(y = ~ RI, name = 'RI')
fig <- fig %>% add_trace(y = ~ NE, name = 'NE')
fig <- fig %>% add_trace(y = ~ NM, name = 'NM')
fig <- fig %>% add_trace(y = ~ WV, name = 'WV')
fig <- fig %>% add_trace(y = ~ AR, name = 'AR')
fig <- fig %>% add_trace(y = ~ IA, name = 'IA')
fig <- fig %>% add_trace(y = ~ KS, name = 'KS')
fig <- fig %>% add_trace(y = ~ MS, name = 'MS')
fig <- fig %>% add_trace(y = ~ NV, name = 'NV')
fig <- fig %>% add_trace(y = ~ UT, name = 'UT')
fig <- fig %>% add_trace(y = ~ CT, name = 'CT')
fig <- fig %>% add_trace(y = ~ OK, name = 'OK')
fig <- fig %>% add_trace(y = ~ OR, name = 'OR')
fig <- fig %>% add_trace(y = ~ KY, name = 'KY')
fig <- fig %>% add_trace(y = ~ LA, name = 'LA')
fig <- fig %>% add_trace(y = ~ AL, name = 'AL')
fig <- fig %>% add_trace(y = ~ CO, name = 'CO')
fig <- fig %>% add_trace(y = ~ SC, name = 'SC')
fig <- fig %>% add_trace(y = ~ MD, name = 'MD')
fig <- fig %>% add_trace(y = ~ MN, name = 'MN')
fig <- fig %>% add_trace(y = ~ MO, name = 'MO')
fig <- fig %>% add_trace(y = ~ WI, name = 'WI')
fig <- fig %>% add_trace(y = ~ AZ, name = 'AZ')
fig <- fig %>% add_trace(y = ~ IN, name = 'IN')
fig <- fig %>% add_trace(y = ~ MA, name = 'MA')
fig <- fig %>% add_trace(y = ~ TN, name = 'TN')
fig <- fig %>% add_trace(y = ~ WA, name = 'WA')
fig <- fig %>% add_trace(y = ~ VA, name = 'VA')
fig <- fig %>% add_trace(y = ~ NJ, name = 'NJ')
fig <- fig %>% add_trace(y = ~ NC, name = 'NC')
fig <- fig %>% add_trace(y = ~ GA, name = 'GA')
fig <- fig %>% add_trace(y = ~ MI, name = 'MI')
fig <- fig %>% add_trace(y = ~ OH, name = 'OH')
fig <- fig %>% add_trace(y = ~ IL, name = 'IL')
fig <- fig %>% add_trace(y = ~ PA, name = 'PA')
fig <- fig %>% add_trace(y = ~ FL, name = 'FL')
fig <- fig %>% add_trace(y = ~ NY, name = 'NY')
fig <- fig %>% add_trace(y = ~ TX, name = 'TX')
fig <- fig %>% add_trace(y = ~ CA, name = 'CA')
fig <- fig %>% layout(yaxis = list(title = 'Electoral votes'),
                      barmode = 'stack',
                      showlegend = FALSE,
                      shapes = list(hline(270)))
# Showing the plot

fig

Post Election Analysis

TN County Presidential Voting Shift

Tennessee was given to Donald Trump (Republican) in both the 2020 and 2024 presidential races. This map analysis suggests he won in different ways each time.

You can explore the maps below to compare the two elections in terms of Republican and Democratic county-level gains and losses compared to the preceding presidential race.

To use the map:

  • Drag a map’s slider left or right to see which counties produced fewer, more, or the same number of votes for each party compared to the most-recent presidential contest.
  • Click on a county to see vote counts for each election.
  • Zoom and pan the map as needed. One possibly helpful tactic is to zoom in on a county, then position the slider so that you can look at the county’s Democratic and Republican vote totals simultaneously.

Here is the 2020 map.

Here is the 2024 map.