library(fpp3)
library(quantmod)
library(readr)
library(readxl)
library(writexl)
library(openxlsx)
library(dplyr)
library(lubridate)
library(ggplot2)
library(forecast)
library(fpp)
library(fpp2)
library(tseries)
library(patchwork)
library(mFilter)
library(xts)
library(zoo)
Vendas2024 <- read_excel("C:/Users/USUARIO/OneDrive/Desktop/algoritmo/Vendas2024.xlsx")
View(Vendas2024)
vendas <- read_excel("C:/Users/USUARIO/OneDrive/Desktop/algoritmo/Vendas2024.xlsx")
venda_mes <- vendas %>%
group_by(ano ,mes) %>%
summarise(venda_mensal = sum(venda_diaria)) %>%
arrange(ano, mes)
## `summarise()` has grouped output by 'ano'. You can override using the `.groups`
## argument.
plot(venda_mes$venda_mensal)
vendas_mes_ts <- ts(venda_mes$venda_mensal, start = c(2018,1), frequency = 12)
plot(vendas_mes_ts)
decomp_vendas_mes <- decompose(vendas_mes_ts, type = 'additive')
plot(decomp_vendas_mes)
forecast(vendas_mes_ts , 6, 90)
## Point Forecast Lo 90 Hi 90
## Apr 2024 592128.1 508364.8 675891.4
## May 2024 677756.0 563531.7 791980.3
## Jun 2024 626941.9 488818.4 765065.3
## Jul 2024 546903.3 388445.2 705361.4
## Aug 2024 546792.1 370327.1 723257.0
## Sep 2024 543842.9 351045.7 736640.1