Pemodelan Regresi Data Panel terhadap Faktor-Faktor yang Mempengaruhi Tingkat Pengangguran Terbuka di Kab/Kota Provinsi Sumatera Barat Tahun 2018-2023

Data

library(readxl)
Data_Projek_ADP <- read_excel("D:/Download/Data Projek ADP.xlsx")
Data_Projek_ADP$Tahun<-as.factor(Data_Projek_ADP$Tahun)
Data_Projek_ADP$`Kabupaten/Kota`<-as.factor(Data_Projek_ADP$`Kabupaten/Kota`)
Data_Projek_ADP$Y<-Data_Projek_ADP$TPT
Data_Projek_ADP$X1<-Data_Projek_ADP$IPM
Data_Projek_ADP$X2<-Data_Projek_ADP$PDRB
Data_Projek_ADP$X3<-Data_Projek_ADP$`Gini Ratio`
Data_Projek_ADP<-Data_Projek_ADP[,-c(3:6)]

Eksplorasi Data

library(psych)
## Warning: package 'psych' was built under R version 4.3.3
YTahun <- describeBy(Data_Projek_ADP$Y, group = Data_Projek_ADP$Tahun)
YTahun
## 
##  Descriptive statistics by group 
## group: 2018
##    vars  n mean   sd median trimmed  mad  min  max range skew kurtosis  se
## X1    1 19 5.22 1.74   5.82    5.16 1.79 2.31 9.29  6.98 0.24    -0.44 0.4
## ------------------------------------------------------------ 
## group: 2019
##    vars  n mean   sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 19 5.08 1.55   4.91    5.03 1.65 2.3 8.74  6.44 0.33    -0.23 0.36
## ------------------------------------------------------------ 
## group: 2020
##    vars  n mean   sd median trimmed  mad  min   max range skew kurtosis   se
## X1    1 19 6.29 2.34   5.62    6.05 1.57 3.03 13.64 10.61 1.45     2.48 0.54
## ------------------------------------------------------------ 
## group: 2021
##    vars  n mean   sd median trimmed  mad  min   max range skew kurtosis   se
## X1    1 19 5.56 2.33   5.02    5.29 1.41 2.25 13.37 11.12  1.8     4.09 0.54
## ------------------------------------------------------------ 
## group: 2022
##    vars  n mean   sd median trimmed  mad  min   max range skew kurtosis   se
## X1    1 19 5.28 1.95      5    5.13 1.32 1.39 11.69  10.3 1.41     4.01 0.45
## ------------------------------------------------------------ 
## group: 2023
##    vars  n mean   sd median trimmed  mad  min   max range skew kurtosis   se
## X1    1 19 5.11 1.86   4.99       5 0.74 1.33 10.86  9.53 0.98     2.88 0.43
YKabKota <- describeBy(Data_Projek_ADP$Y, group = Data_Projek_ADP$`Kabupaten/Kota`)
YKabKota
## 
##  Descriptive statistics by group 
## group: Kab Agam
##    vars n mean   sd median trimmed  mad  min  max range  skew kurtosis   se
## X1    1 6 4.88 0.16   4.93    4.88 0.12 4.61 5.06  0.45 -0.56    -1.33 0.06
## ------------------------------------------------------------ 
## group: Kab Dharmasraya
##    vars n mean   sd median trimmed mad  min  max range  skew kurtosis   se
## X1    1 6 5.31 0.84   5.18    5.31 0.9 4.02 6.23  2.21 -0.18    -1.58 0.34
## ------------------------------------------------------------ 
## group: Kab Kepulauan Mentawai
##    vars n mean   sd median trimmed  mad  min  max range skew kurtosis   se
## X1    1 6 2.45 1.01   2.55    2.45 1.13 1.33 3.98  2.65 0.18    -1.65 0.41
## ------------------------------------------------------------ 
## group: Kab Lima Puluh Kota
##    vars n mean   sd median trimmed mad  min  max range skew kurtosis   se
## X1    1 6    3 0.71   2.88       3 0.9 2.25 3.95   1.7 0.22    -1.94 0.29
## ------------------------------------------------------------ 
## group: Kab Padang Pariaman
##    vars n mean   sd median trimmed  mad  min  max range skew kurtosis   se
## X1    1 6 7.16 0.92   6.86    7.16 0.77 6.08 8.41  2.33 0.29    -1.87 0.38
## ------------------------------------------------------------ 
## group: Kab Pasaman
##    vars n mean  sd median trimmed  mad  min  max range skew kurtosis   se
## X1    1 6 5.29 0.4   5.19    5.29 0.25 4.92 6.04  1.12 0.88    -0.85 0.16
## ------------------------------------------------------------ 
## group: Kab Pasaman Barat
##    vars n mean   sd median trimmed  mad  min  max range  skew kurtosis   se
## X1    1 6 5.03 1.06   4.88    5.03 0.98 3.36 6.33  2.97 -0.21    -1.49 0.43
## ------------------------------------------------------------ 
## group: Kab Pesisir Selatan
##    vars n mean  sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 6 5.73 0.9   5.99    5.73 0.77 4.61   7  2.39 -0.05    -1.71 0.37
## ------------------------------------------------------------ 
## group: Kab Sijunjung
##    vars n mean   sd median trimmed  mad  min max range skew kurtosis   se
## X1    1 6 4.22 0.85   4.18    4.22 0.96 3.22 5.3  2.08 0.05    -2.06 0.35
## ------------------------------------------------------------ 
## group: Kab Solok
##    vars n mean   sd median trimmed  mad  min  max range skew kurtosis   se
## X1    1 6 5.17 0.66   4.86    5.17 0.29 4.65 6.12  1.47 0.49     -1.9 0.27
## ------------------------------------------------------------ 
## group: Kab Solok Selatan
##    vars n mean   sd median trimmed  mad  min  max range skew kurtosis  se
## X1    1 6 4.58 1.24   4.88    4.58 1.27 2.57 5.84  3.27 -0.5    -1.53 0.5
## ------------------------------------------------------------ 
## group: Kab Tanah Datar
##    vars n mean   sd median trimmed  mad min  max range  skew kurtosis   se
## X1    1 6 4.65 0.96   4.71    4.65 0.99 3.2 5.91  2.71 -0.18    -1.56 0.39
## ------------------------------------------------------------ 
## group: Kota Bukittinggi
##    vars n mean   sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 6 6.16 1.09   6.14    6.16 1.67 4.9 7.51  2.61 0.03    -1.93 0.45
## ------------------------------------------------------------ 
## group: Kota Padang
##    vars n  mean   sd median trimmed  mad  min   max range  skew kurtosis   se
## X1    1 6 11.27 2.03  11.27   11.27 3.02 8.74 13.64   4.9 -0.02    -1.96 0.83
## ------------------------------------------------------------ 
## group: Kota Padang Panjang
##    vars n mean   sd median trimmed  mad  min  max range skew kurtosis  se
## X1    1 6 5.36 0.99   5.12    5.36 0.48 4.38 7.22  2.84 0.89    -0.77 0.4
## ------------------------------------------------------------ 
## group: Kota Pariaman
##    vars n mean   sd median trimmed  mad  min  max range  skew kurtosis   se
## X1    1 6 5.66 0.31    5.7    5.66 0.25 5.19 6.09   0.9 -0.19    -1.38 0.13
## ------------------------------------------------------------ 
## group: Kota Payakumbuh
##    vars n mean   sd median trimmed  mad  min  max range skew kurtosis   se
## X1    1 6  5.2 1.15      5     5.2 1.42 3.95 6.68  2.73 0.21    -1.95 0.47
## ------------------------------------------------------------ 
## group: Kota Sawahlunto
##    vars n mean   sd median trimmed  mad  min max range skew kurtosis  se
## X1    1 6 6.22 1.22   6.15    6.22 1.36 4.98 8.2  3.22 0.39    -1.49 0.5
## ------------------------------------------------------------ 
## group: Kota Solok
##    vars n mean   sd median trimmed  mad  min  max range skew kurtosis   se
## X1    1 6  5.7 1.81   5.59     5.7 2.34 3.72 8.35  4.63  0.2    -1.79 0.74

Grafik Pergerakan Y (Tingkat Pengangguran Terbuka)

library(plotly)
## Warning: package 'plotly' was built under R version 4.3.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.3.3
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
plot_ly(Data_Projek_ADP, x = Data_Projek_ADP$Tahun, y = Data_Projek_ADP$Y, 
        type = 'scatter', mode = 'lines+markers',
        color = Data_Projek_ADP$`Kabupaten/Kota`)
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors

Pendugaan Parameter

library(plm)
## Warning: package 'plm' was built under R version 4.3.3
common<-plm(Y~X1+X2+X3, data = Data_Projek_ADP, model = "pooling")
summary(common)
## Pooling Model
## 
## Call:
## plm(formula = Y ~ X1 + X2 + X3, data = Data_Projek_ADP, model = "pooling")
## 
## Balanced Panel: n = 6, T = 19, N = 114
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -2.524560 -0.983069 -0.053537  0.756945  3.201944 
## 
## Coefficients:
##                Estimate  Std. Error t-value  Pr(>|t|)    
## (Intercept) -8.9745e+00  1.8934e+00 -4.7400 6.440e-06 ***
## X1           1.3145e-01  2.6311e-02  4.9961 2.219e-06 ***
## X2           7.2389e-05  9.1886e-06  7.8782 2.561e-12 ***
## X3           1.3282e+01  4.0064e+00  3.3151  0.001241 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    446.16
## Residual Sum of Squares: 178.65
## R-Squared:      0.59958
## Adj. R-Squared: 0.58866
## F-statistic: 54.9047 on 3 and 110 DF, p-value: < 2.22e-16
fixed<-plm(Y~X1+X2+X3, data = Data_Projek_ADP, model = "within")
summary(fixed)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = Y ~ X1 + X2 + X3, data = Data_Projek_ADP, model = "within")
## 
## Balanced Panel: n = 6, T = 19, N = 114
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -2.771388 -0.887170 -0.073985  0.794485  2.705767 
## 
## Coefficients:
##      Estimate Std. Error t-value  Pr(>|t|)    
## X1 1.4275e-01 2.6880e-02  5.3105 6.153e-07 ***
## X2 7.4496e-05 8.8378e-06  8.4292 1.985e-13 ***
## X3 9.7498e+00 4.2555e+00  2.2911   0.02396 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    426.35
## Residual Sum of Squares: 157.03
## R-Squared:      0.6317
## Adj. R-Squared: 0.60364
## F-statistic: 60.0312 on 3 and 105 DF, p-value: < 2.22e-16
random<-plm(Y~X1+X2+X3, data = Data_Projek_ADP, model = "random")
summary(random)
## Oneway (individual) effect Random Effect Model 
##    (Swamy-Arora's transformation)
## 
## Call:
## plm(formula = Y ~ X1 + X2 + X3, data = Data_Projek_ADP, model = "random")
## 
## Balanced Panel: n = 6, T = 19, N = 114
## 
## Effects:
##                 var std.dev share
## idiosyncratic 1.495   1.223     1
## individual    0.000   0.000     0
## theta: 0
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -2.524560 -0.983069 -0.053537  0.756945  3.201944 
## 
## Coefficients:
##                Estimate  Std. Error z-value  Pr(>|z|)    
## (Intercept) -8.9745e+00  1.8934e+00 -4.7400 2.138e-06 ***
## X1           1.3145e-01  2.6311e-02  4.9961 5.851e-07 ***
## X2           7.2389e-05  9.1886e-06  7.8782 3.322e-15 ***
## X3           1.3282e+01  4.0064e+00  3.3151 0.0009162 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    446.16
## Residual Sum of Squares: 178.65
## R-Squared:      0.59958
## Adj. R-Squared: 0.58866
## Chisq: 164.714 on 3 DF, p-value: < 2.22e-16

Pemilihan Model Terbaik

#Uji Cow
pFtest(fixed, common)
## 
##  F test for individual effects
## 
## data:  Y ~ X1 + X2 + X3
## F = 2.8919, df1 = 5, df2 = 105, p-value = 0.01737
## alternative hypothesis: significant effects
#Uji Hausman
phtest(fixed, random)
## 
##  Hausman Test
## 
## data:  Y ~ X1 + X2 + X3
## chisq = 3.5691, df = 3, p-value = 0.3119
## alternative hypothesis: one model is inconsistent
#Uji Lagrange Multipliers
plmtest(random, effect="individual", type="bp")
## 
##  Lagrange Multiplier Test - (Breusch-Pagan)
## 
## data:  Y ~ X1 + X2 + X3
## chisq = 4.4009, df = 1, p-value = 0.03592
## alternative hypothesis: significant effects

Uji Asumsi Model Terpilih (REM)

library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
library(lmtest)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
#Uji Asumsi Normalitas
residuals <- random$residuals
shapiro.test(residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals
## W = 0.98238, p-value = 0.1394
plot(residuals)

#Uji Multikolinearitas
vif(random)
##       X1       X2       X3 
## 1.237263 1.128218 1.116716
#Uji Heteroskedastisitas
lmtest::bptest(random)
## 
##  studentized Breusch-Pagan test
## 
## data:  random
## BP = 2.6607, df = 3, p-value = 0.4469
#Uji Autokorelasi
lmtest::bgtest(random)
## 
##  Breusch-Godfrey test for serial correlation of order up to 1
## 
## data:  random
## LM test = 0.0072874, df = 1, p-value = 0.932
#Uji Signifikansi Parameter
summary(random)
## Oneway (individual) effect Random Effect Model 
##    (Swamy-Arora's transformation)
## 
## Call:
## plm(formula = Y ~ X1 + X2 + X3, data = Data_Projek_ADP, model = "random")
## 
## Balanced Panel: n = 6, T = 19, N = 114
## 
## Effects:
##                 var std.dev share
## idiosyncratic 1.495   1.223     1
## individual    0.000   0.000     0
## theta: 0
## 
## Residuals:
##      Min.   1st Qu.    Median   3rd Qu.      Max. 
## -2.524560 -0.983069 -0.053537  0.756945  3.201944 
## 
## Coefficients:
##                Estimate  Std. Error z-value  Pr(>|z|)    
## (Intercept) -8.9745e+00  1.8934e+00 -4.7400 2.138e-06 ***
## X1           1.3145e-01  2.6311e-02  4.9961 5.851e-07 ***
## X2           7.2389e-05  9.1886e-06  7.8782 3.322e-15 ***
## X3           1.3282e+01  4.0064e+00  3.3151 0.0009162 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    446.16
## Residual Sum of Squares: 178.65
## R-Squared:      0.59958
## Adj. R-Squared: 0.58866
## Chisq: 164.714 on 3 DF, p-value: < 2.22e-16