#install.packages(zoo)
library(readxl)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(zoo)
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(ggplot2)
Input time series data
week <- 1:6 #Independent variable
valuesq1 <- c(17,13,15,11,17,14) #Dependent variables
# Most recent value
forecast_a <- valuesq1[-length(valuesq1)] #Exclude last value
actual <- valuesq1[-1] #Exclude first value
mse <- mean((actual - forecast_a)^2)
mse #Mean square error = 16.2
## [1] 16.2
mae <- mean(abs(actual - forecast_a))
mae #Mean absolute error
## [1] 3.8
mape <- mean(abs((actual - forecast_a)/actual)) * 100
mape #Mean absolute percentage error
## [1] 27.43778
forecast_week7 <- tail(valuesq1, 1)
forecast_week7 #Projected values
## [1] 14
## Moving Avg and Time Series Plot
df <- data.frame(month=c(1,2,3,4,5,6,7,8,9,10,11,12),
values=c(240, 352, 230, 260, 280, 322, 220, 310, 240, 310, 240, 230))
summary(df)# Average value is 269.5 over a 12 month period
## month values
## Min. : 1.00 Min. :220.0
## 1st Qu.: 3.75 1st Qu.:237.5
## Median : 6.50 Median :250.0
## Mean : 6.50 Mean :269.5
## 3rd Qu.: 9.25 3rd Qu.:310.0
## Max. :12.00 Max. :352.0
Time Series Plot
plot(df$month, df$values, type = "o", col = "blue", xlab = "Month", ylab = "Values",
main = "Alabama Building Contracts Plot")
Manually calculate three-month moving average
df$avg_values <- c(NA, NA, NA,
(df$values[1] + df$values[2] + df$values[3]) / 3,
(df$values[2] + df$values[3] + df$values[4]) / 3,
(df$values[3] + df$values[4] + df$values[5]) / 3,
(df$values[4] + df$values[5] + df$values[6]) / 3,
(df$values[5] + df$values[6] + df$values[7]) / 3,
(df$values[6] + df$values[7] + df$values[8]) / 3,
(df$values[7] + df$values[8] + df$values[9]) / 3,
(df$values[8] + df$values[9] + df$values[10]) / 3,
(df$values[9] + df$values[10] + df$values[11]) / 3
)
Interpretation: The time series plot has a horizontal pattern.
Calculate the squared errors
df <- df %>%
mutate(
squared_error = ifelse(is.na(avg_values), NA, (values-avg_values)^2)
)
Compute MSE not including intion weeks with NA
mse1 <- mean(df$squared_error, na.rm = TRUE)
mse1 #Output the MSE = 2040.44
## [1] 2040.444
Exponential smoothing
alpha <- 0.2
exp_smooth <- rep(NA, length(df$values))
exp_smooth[1] <- df$values[1] #starting point
for(i in 2:length(df$values)) {
exp_smooth[i] <- alpha * df$values[i-1] + (1 - alpha) * exp_smooth[i-1]
}
mse_exp_smooth <- mean((df$values[2:12] - exp_smooth[2:12])^2) # Output the MSE= 2593.76
mse_exp_smooth
## [1] 2593.762
Comparison
better_method <- ifelse(mse < mse_exp_smooth, "Three-Month Moving Average", "Exponential Smoothing")
Result
list(
MSE_Moving_Average = mse,
MSE_Exponential_Smoothing = mse_exp_smooth,
Better_Method = better_method
)
## $MSE_Moving_Average
## [1] 16.2
##
## $MSE_Exponential_Smoothing
## [1] 2593.762
##
## $Better_Method
## [1] "Three-Month Moving Average"
##Question 3:
## Question 3: Time Series Plot
data <- read_excel("/Applications/R Markdowns/Mortgage.xlsx")
df <- data.frame(period=data$Period,
rate=data$Interest_Rate)
summary(df)
## period rate
## Min. : 1.00 Min. :2.958
## 1st Qu.: 6.75 1st Qu.:3.966
## Median :12.50 Median :4.863
## Mean :12.50 Mean :5.084
## 3rd Qu.:18.25 3rd Qu.:6.105
## Max. :24.00 Max. :8.053
Interpretation: Average mortgage rate over 20 years is 5.08%
Time Series Plot
ggplot(df, aes(x=period, y =rate)) +
geom_line() +
geom_point() +
xlab("Period") +
ylab("Interest Rate") +
ggtitle("Time Series Plot of 30 Year Mortgage Rates")
Interpretation: Decreasing trend in the time series plot, seasonal patters could be the explanation
##Question 4:
Develop a linear trend equation:
model <- lm(rate ~ period, data = df)
summary(model)
##
## Call:
## lm(formula = rate ~ period, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3622 -0.7212 -0.2823 0.5015 3.1847
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.69541 0.43776 15.295 3.32e-13 ***
## period -0.12890 0.03064 -4.207 0.000364 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.039 on 22 degrees of freedom
## Multiple R-squared: 0.4459, Adjusted R-squared: 0.4207
## F-statistic: 17.7 on 1 and 22 DF, p-value: 0.0003637
Estimated liner equation= 6.69 + 0.13(period)
##Question5:
forecast_period_25 <- predict(model, newdata = data.frame(period=25))
forecast_period_25
## 1
## 3.472942
Average interest rate for period 25 is 3.47