# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899137
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347493
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1] -0.0559751398  0.0042695559  0.0024663238  0.0690526124  0.0077275230
##   [6]  0.0337830573  0.0204873530 -0.0174490722  0.0076342030  0.0046675256
##  [11] -0.0209806773  0.0289227597 -0.0085544857  0.0065065245  0.0317326919
##  [16] -0.0299939382  0.0262992023 -0.0056126010  0.0196433582  0.0175785189
##  [21] -0.0513377401 -0.0143780514 -0.0025770540  0.0478345280  0.0261175306
##  [26]  0.0042139296 -0.0017726341 -0.0115058313  0.0285354374  0.0252726183
##  [31] -0.0073354009  0.0261706014  0.0308811371 -0.0029921118  0.0287064122
##  [36] -0.0271305800  0.0388790861  0.0168876780  0.0241759352 -0.0011158874
##  [41]  0.0408434936 -0.0006312985 -0.0200045126 -0.0183771127  0.0352769326
##  [46] -0.0103810821  0.0173342838  0.0657639602 -0.0430892682 -0.0374320815
##  [51]  0.0592537519  0.0061242917  0.0095476051  0.0284464856 -0.0102958761
##  [56] -0.0159580354  0.0302198928  0.0099134736  0.0168939595 -0.0107067857
##  [61]  0.0134431296 -0.0160833913  0.0544649733  0.0276381950  0.0027287523
##  [66] -0.0040052434 -0.0071478275  0.0170586660 -0.0008986999 -0.0111738274
##  [71] -0.0133961559  0.0241322544  0.0208976266  0.0295062527 -0.0082693061
##  [76]  0.0177055539 -0.0609833033  0.0543252280 -0.0133118864 -0.0023020386
##  [81]  0.0277275868 -0.0037723751 -0.0277676993 -0.0174878515  0.0293616416
##  [86] -0.0095832880  0.0289427942 -0.0186744304  0.0424063415 -0.0024902834
##  [91] -0.0365773935 -0.0425778261 -0.0213059419  0.0329144880  0.0482666373
##  [96]  0.0230367398  0.0364055911  0.0151930986 -0.0258446268  0.0144033006
## [101]  0.0054513585 -0.0190017676 -0.0185911002  0.0399724629  0.0551836013
## [106]  0.0168824947 -0.0484101519  0.0200933030  0.0180807362  0.0315230342
## [111]  0.0132899348  0.0031077370  0.0065688231  0.0089169128  0.0091039892
## [116]  0.0414133840 -0.0008940590 -0.0151558117 -0.0111520763 -0.0034301717
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   0.944
##  3   1.00 
##  4   1.00 
##  5   1.07 
##  6   1.01 
##  7   1.03 
##  8   1.02 
##  9   0.983
## 10   1.01 
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.944
##  3  0.948
##  4  0.950
##  5  1.02 
##  6  1.02 
##  7  1.06 
##  8  1.08 
##  9  1.06 
## 10  1.07 
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 8.318074

6 Simulation function

simulate_accumulation <- function(init_value, N, mean, stdev) {

    tibble(returns = c(init_value, 1 + rnorm(N, mean, stdev))) %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)

}

simulate_accumulation(1, 120, mean_port_return, stddev_port_return)
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.987
##  3  0.997
##  4  0.977
##  5  0.996
##  6  1.02 
##  7  1.02 
##  8  1.05 
##  9  1.04 
## 10  1.05 
## # ℹ 111 more rows

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste("sim", 1:sims, sep = ""))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim_51 <- starts %>%

    # Simulate
    map_dfc(simulate_accumulation,
            N     = 120,
            mean  = mean_port_return,
            stdev = stddev_port_return) %>%

    # Add the column, month
    mutate(month = seq(1:nrow(.))) %>%

    # Arrange column names
    select(month, everything()) %>%
    set_names(c("month", names(starts))) %>%

    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # ℹ 6,161 more rows
# Calculate the quantiles for simulated values

probs <- c(.005, .025, .25, .5, .75, .975, .995)

monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%

    # Find the quantiles
    quantile(probs = probs) %>%
    round(2)
##  0.5%  2.5%   25%   50%   75% 97.5% 99.5% 
##  1.00  1.26  1.71  2.07  2.30  3.48  4.24

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%

    ggplot(aes(x = month, y = growth, col = sim)) +
    geom_line() +
    theme(legend.position = "none")

# Simplify the plot

sim_summary <- monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%

    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  4.43   2.07 0.915
monte_carlo_sim_51 %>%

    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
           last(growth) == sim_summary$median |
           last(growth) == sim_summary$min) %>%

    # Plot
    ggplot(aes(month, growth, col = sim)) +
    geom_line() +
    theme()