Quarto
Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org .
Running Code
When you click the Render button a document will be generated that includes both content and the output of embedded code. You can embed code like this:
Le chargement a nécessité le package : Matrix
train= sample (32 ,25 ,replace = T)
train
[1] 5 16 32 4 1 21 11 13 10 1 22 1 26 28 13 7 6 16 12 27 12 7 12 28 28
TR= mtcars[train,]
TS= mtcars[- train,]
dim (TR)
stripchart (TR$ mpg~ TR$ cyl,cex= 2 )
stripchart (TS$ mpg~ TS$ cyl,col= 3 ,pch= 20 ,cex= 2 )
mpg cyl disp hp drat wt qsec vs am carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 2
Y= mtcars$ mpg
mo1= lm (mpg~ cyl,data= TR)
summary (mo1)
Call:
lm(formula = mpg ~ cyl, data = TR)
Residuals:
Min 1Q Median 3Q Max
-4.9931 -1.4853 0.3147 1.4226 4.0069
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.8088 2.2535 16.778 2.14e-14 ***
cyl -2.8539 0.3448 -8.278 2.38e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.873 on 23 degrees of freedom
Multiple R-squared: 0.7487, Adjusted R-squared: 0.7378
F-statistic: 68.52 on 1 and 23 DF, p-value: 2.377e-08
SSEMO= sum ((mo1$ fitted.values- TR$ mpg)^ 2 )
length (TR$ mpg)
##ee RSE of mo1 is not an MSE (MSE is a biased estimator)
##TEST
motest= lm (mpg~ cyl,data= TS)
summary (motest)
Call:
lm(formula = mpg ~ cyl, data = TS)
Residuals:
Min 1Q Median 3Q Max
-4.8427 -1.9309 0.1055 1.4809 6.2573
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.5409 3.0765 13.177 2.79e-09 ***
cyl -3.2245 0.4719 -6.833 8.16e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.5 on 14 degrees of freedom
Multiple R-squared: 0.7693, Adjusted R-squared: 0.7528
F-statistic: 46.69 on 1 and 14 DF, p-value: 8.155e-06
SSEMOtest= sum ((motest$ fitted.values- TS$ mpg)^ 2 )
length (TS$ mpg)
MSEMOt= SSEMOtest/ 13
MSEMOt
sum (motest$ residuals^ 2 )/ 10
You can add options to executable code like this
ABBREVIATIONS
RSE Residuals standard error (lm fx) SSRES/n-p
SSR Sum of squared residuals values