setwd("D:/data") # 设置工作目录,根据实际情况修改路径
d3.5<-read.csv("C:\\Users\\86167\\Desktop\\ex3.5.csv",header=T) # 读取数据到数据框d3.5
glm.logit<-glm(admit~gre+gpa+rank,family=binomial(link =logit),data=d3.5)
summary(glm.logit)
##
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = binomial(link = logit),
## data = d3.5)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.449548 1.132846 -3.045 0.00233 **
## gre 0.002294 0.001092 2.101 0.03564 *
## gpa 0.777014 0.327484 2.373 0.01766 *
## rank -0.560031 0.127137 -4.405 1.06e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 499.98 on 399 degrees of freedom
## Residual deviance: 459.44 on 396 degrees of freedom
## AIC: 467.44
##
## Number of Fisher Scoring iterations: 4
##gre,gpa,rank对应的P值都比较小,比较显著。admit=-3.4495+0.0023gra+0.7770gpa-0.5600rank
yp<-predict(glm.logit,data.frame(gre=380,gpa=3.61,rank=3))
p.fit<-exp(yp)/(1+exp(yp));p.fit
## 1
## 0.1895527
##当gre=380,gpa=3.61,rank=3时,估计admit=1的概率约为0.1896,可能性约为18.96%.
yp<-predict(glm.logit,data.frame(gre=800,gpa=4,rank=1))
p.fit<-exp(yp)/(1+exp(yp));p.fit
## 1
## 0.7178136
##当gre=800,gpa=4,rank=1时,估计admit=1的概率约为0.7178,可能性约为71.78%.