Napomena Ovaj dokument sadrzi slijedece: zakljucno sa 25.11.2024.

Ovaj wage model sadrzi samo one osobe koje su zaposlene, a dodacu i novu dummy varijablu full time dummy ili part time dummy.

Takodjer to je varijanta koju finalno uzimam. dakle bez varijanti. na kraju sam ove rezultate pomnozila sa udjelom stope zaposlenosti ali to mi je u excel sheety Monetary indexes for mapping.

library(haven)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
setwd("C:/Users/Amra/Documents/HBS database inspecting")
HBS_2015_HH_short <- read_sav("~/HBS database inspecting/HBS_2015_HH - short.sav")
hbs_short <- HBS_2015_HH_short

01 OZNACAVA DA SE RADI O PRVOM CLANU DOMACINSTVA KOJI JE PRIMAO ZARADE YN Oznacava DA-NE tj. odnosi se na da li su ili nisu primali naknade IN Mjesecni iznos odredjene naknade NM Broj mjeseci za koji je primljen taj iznos

Sabracu za svakog clana domacinstva koji su rekli da su primili neku od nakanda i vidjeti koliko mi to pokriva opstina

hbs_short$amr.NEWINCOM <- rowSums(hbs_short[,c("Q02_YN_01_S12","Q02_YN_02_S12","Q02_YN_03_S12","Q02_YN_04_S12","Q02_YN_05_S12","Q02_YN_06_S12", "Q02_YN_07_S12", "Q02_YN_08_S12", "Q02_YN_09_S12","Q02_YN_10_S12","Q02_YN_11_S12","Q02_YN_12_S12", "Q02_YN_13_S12")],na.rm = T)

table(hbs_short$amr.NEWINCOM)
## 
##    0    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
##   44  592 1583 1297 1598  900  697  500  231  134   63   39   11    7    1    3 
##   18 
##    2

Prema ovoma samo u 44 domacinstava ni jedan clan ne dobiva nsita sto je navedeno u piatanjama QA01 - QA23.

Plan za dalje:

  1. Za svaku varijablu koja ima neki inkom izracunati mjesecne izdatke i za svakog clana. jer imaju i iznos a ima i koliko mjesecno je primao, tako da to treba mnoziti sa kolonom broj mjeseci pa dijeli sa brojem 12.
  2. Nakon toga cu da izracunam mjesecna primanja za svakog clana domacinstva
  3. Necu racunati allowance jer to nije zarada niti cu stavljati iznamljivanje zemlje, garaze i slicen rente jer i to mi nije zarada.
  4. Onda cu to sve sabrati i imacu mjesecnu zaradu po domacinstvu.
  5. Zadrzavam samo one koje su Active 1 i Active 2
  6. Formiram full time dummy

ZA PLATE UZIMAM SVAKOG CLANA PORODICE POSEBNO

  1. NECU BRISATI _S2, _S6, _S7, _S10, COICOP, jer cu mozda samo za ove likove racunati transport.
  2. Samo prvih osam clanova razmatram, jer npr za 9-og clana QA01_YN_09_S12 samo je jedan primio remitencices, 10 nije nisa,
  3. _S11 brisati to su penzije, QBizbaciti to su penzije, a ostaviti QA, to je income, izbaciti QC, QD,
library(dplyr)

hbs_wage <- hbs_short %>% dplyr::select(contains(c( "SifraDom","Entity","Canton","naziv_opcine","RurUrb","ncomp","finweight","Relat","Sex","Age", "Educ","Activ", "HH_Monthly", "QA", "_S2", "_S6", "_S7", "_S10", "COICOP")))

#remove additional unnecessary variables

hbs_wage <- as.data.frame(hbs_wage)
hbs_wage <- hbs_wage  %>% select(-c(M_Entity, M_Canton_Region, Relat_9, Relat_10, Relat_11, Relat_12, Relat_13, Sex_9, Sex_10, Sex_11, Sex_12, Sex_13, Age_9, Age_10, Age_11, Age_12, Age_13, Educ_9, Educ_10, Educ_11, Educ_12,Educ_13,Activ_9, Activ_10, Activ_11, Activ_12, Activ_13))
#izbacumjem nepotrebne varijable iz Educ (Class, now, Level)
hbs_wage <- hbs_wage  %>% select(!contains(c("Class","now","Level","QA16","QA17","QA18", "QA19", "QA20", "QA22", "QA21","_09_S12", "_10_S12")))

FAZA 2

SADA PRVO FORMIRAM WAGE ZA SVAKOG CLANA DOMACINSTVA ZA INCOME

Mjesecno all wage for 1st household

library(haven)
hbs_wage$QA01_01_mj <- (hbs_wage$QA01_IN_01_S12*hbs_wage$QA01_NM_01_S12)/12
hbs_wage$QA02_01_mj <- (hbs_wage$QA02_IN_01_S12*hbs_wage$QA02_NM_01_S12)/12
hbs_wage$QA03_01_mj <- (hbs_wage$QA03_IN_01_S12*hbs_wage$QA03_NM_01_S12)/12
hbs_wage$QA04_01_mj <- (hbs_wage$QA04_IN_01_S12*hbs_wage$QA04_NM_01_S12)/12
hbs_wage$QA05_01_mj <- (hbs_wage$QA05_IN_01_S12*hbs_wage$QA05_NM_01_S12)/12
hbs_wage$QA06_01_mj <- (hbs_wage$QA06_IN_01_S12*hbs_wage$QA06_NM_01_S12)/12
hbs_wage$QA07_01_mj <- (hbs_wage$QA07_IN_01_S12*hbs_wage$QA07_NM_01_S12)/12
hbs_wage$QA08_01_mj <- (hbs_wage$QA08_IN_01_S12*hbs_wage$QA08_NM_01_S12)/12
hbs_wage$QA09_01_mj <- (hbs_wage$QA09_IN_01_S12*hbs_wage$QA09_NM_01_S12)/12
hbs_wage$QA10_01_mj <- (hbs_wage$QA10_IN_01_S12*hbs_wage$QA10_NM_01_S12)/12
hbs_wage$QA11_01_mj <- (hbs_wage$QA11_IN_01_S12*hbs_wage$QA11_NM_01_S12)/12
hbs_wage$QA12_01_mj <- (hbs_wage$QA12_IN_01_S12*hbs_wage$QA12_NM_01_S12)/12
hbs_wage$QA13_01_mj <- (hbs_wage$QA13_IN_01_S12*hbs_wage$QA13_NM_01_S12)/12
hbs_wage$QA14_01_mj <- (hbs_wage$QA14_IN_01_S12*hbs_wage$QA14_NM_01_S12)/12
hbs_wage$QA15_01_mj <- (hbs_wage$QA15_IN_01_S12*hbs_wage$QA15_NM_01_S12)/12
hbs_wage$QA23_01_mj <- (hbs_wage$QA23_IN_01_S12*hbs_wage$QA23_NM_01_S12)/12

Mjesecno sva primanja za prvog householda

hbs_wage$QA_01_all_mj <- rowSums(hbs_wage[,c("QA01_01_mj","QA02_01_mj","QA03_01_mj","QA04_01_mj","QA05_01_mj","QA06_01_mj", "QA07_01_mj", "QA08_01_mj", "QA09_01_mj", "QA10_01_mj", "QA11_01_mj", "QA12_01_mj","QA13_01_mj", "QA14_01_mj", "QA15_01_mj", "QA23_01_mj")],na.rm = T)
summary(hbs_wage$QA_01_all_mj)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0     0.0     0.0   290.0   466.7 18350.0
plot(density(hbs_wage$QA_01_all_mj))

Mjesecno samo QA01_, QA02, QA_07, QA_08, QA_09, QA14, QA15 za prvog clana. Ovo je taj Ismirov mail od 3.januara tj. not all.

hbs_wage$QAnotall_01_mj <- rowSums(hbs_wage[,c("QA01_01_mj","QA02_01_mj","QA07_01_mj", "QA08_01_mj", "QA09_01_mj", "QA14_01_mj", "QA15_01_mj")],na.rm = T)

summary(hbs_wage$QAnotall_01_mj)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0     0.0     0.0   244.1   369.2 18350.0
plot(density(hbs_wage$QAnotall_01_mj))

mjesecno all wage for 2nd household

Mjesecno sva primanja za drugog householda

Mjesecno samo QA01_, QA02, QA_07, QA_08, QA_09, QA14, QA15 za drugog clana

hbs_wage$QAnotall_02_mj <- rowSums(hbs_wage[,c("QA01_02_mj","QA02_02_mj","QA07_02_mj", "QA08_02_mj", "QA09_02_mj", "QA14_02_mj", "QA15_02_mj")],na.rm = T)

summary(hbs_wage$QAnotall_02_mj)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0     0.0     0.0   127.5     0.0 12833.3
plot(density(hbs_wage$QAnotall_02_mj))

mjesecno all wage for 3nd household

Mjesecno sva primanja za treci householda

Mjesecno samo QA01_, QA02, QA_07, QA_08, QA_09, QA14, QA15 za treceg clana

hbs_wage$QAnotall_03_mj <- rowSums(hbs_wage[,c("QA01_03_mj","QA02_03_mj","QA07_03_mj", "QA08_03_mj", "QA09_03_mj", "QA14_03_mj", "QA15_03_mj")],na.rm = T)

summary(hbs_wage$QAnotall_03_mj)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##     0.00     0.00     0.00    67.53     0.00 12000.00
plot(density(hbs_wage$QAnotall_03_mj))

mjesecno all wage for 4th household

Mjesecno sva primanja za cetvrta householda

Mjesecno samo QA01_, QA02, QA_07, QA_08, QA_09, QA14, QA15 za cetvrtog clana

hbs_wage$QAnotall_04_mj <- rowSums(hbs_wage[,c("QA01_04_mj","QA02_04_mj","QA07_04_mj", "QA08_04_mj", "QA09_04_mj", "QA14_04_mj", "QA15_04_mj")],na.rm = T)
hbs_wage$QAnotall_04_mj <- as.numeric(hbs_wage$QAnotall_04_mj)
summary(hbs_wage$QAnotall_04_mj)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    0.00   18.41    0.00 2750.00
str(hbs_wage$QAnotall_04_mj)
##  num [1:7702] 0 0 0 0 0 0 0 0 0 0 ...
plot(density(hbs_wage$QAnotall_04_mj))

mjesecno all wage for 5th household

Mjesecno sva primanja za petog householda

Mjesecno samo QA01_, QA02, QA_07, QA_08, QA_09, QA14, QA15 za petog clana

hbs_wage$QAnotall_05_mj <- rowSums(hbs_wage[,c("QA01_05_mj","QA02_05_mj","QA07_05_mj", "QA08_05_mj", "QA09_05_mj", "QA14_05_mj", "QA15_05_mj")],na.rm = T)
hbs_wage$QAnotall_05_mj <- as.numeric(hbs_wage$QAnotall_05_mj)
summary(hbs_wage$QAnotall_05_mj)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##    0.000    0.000    0.000    4.682    0.000 1500.000
str(hbs_wage$QAnotall_05_mj)
##  num [1:7702] 0 0 0 0 0 0 0 0 0 0 ...
plot(density(hbs_wage$QAnotall_05_mj))

mjesecno all wage for 6th household

Mjesecno sva primanja za sesti householda

Mjesecno samo QA01_, QA02, QA_07, QA_08, QA_09, QA14, QA15 za sestog clana

hbs_wage$QAnotall_06_mj <- rowSums(hbs_wage[,c("QA01_06_mj","QA02_06_mj","QA07_06_mj", "QA08_06_mj", "QA09_06_mj", "QA14_06_mj", "QA15_06_mj")],na.rm = T)
hbs_wage$QAnotall_06_mj <- as.numeric(hbs_wage$QAnotall_06_mj)
summary(hbs_wage$QAnotall_06_mj)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##    0.000    0.000    0.000    1.657    0.000 1200.000
str(hbs_wage$QAnotall_06_mj)
##  num [1:7702] 0 0 0 0 0 0 0 0 0 0 ...
plot(density(hbs_wage$QAnotall_06_mj))

mjesecno all wage for 7th household

Mjesecno sva primanja za sedmog householda

Mjesecno samo QA01_, QA02, QA_07, QA_08, QA_09, QA14, QA15 za petog clana

hbs_wage$QAnotall_07_mj <- rowSums(hbs_wage[,c("QA01_07_mj","QA02_07_mj","QA07_07_mj", "QA08_07_mj", "QA09_07_mj", "QA14_07_mj", "QA15_07_mj")],na.rm = T)
hbs_wage$QAnotall_07_mj <- as.numeric(hbs_wage$QAnotall_07_mj)
summary(hbs_wage$QAnotall_07_mj)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##    0.0000    0.0000    0.0000    0.4068    0.0000 1200.0000
str(hbs_wage$QAnotall_07_mj)
##  num [1:7702] 0 0 0 0 0 0 0 0 0 0 ...
plot(density(hbs_wage$QAnotall_07_mj))

mjesecno all wage for 8th household

Mjesecno sva primanja za osmog householda

Mjesecno samo QA01_, QA02, QA_07, QA_08, QA_09, QA14, QA15 za osmog clana

hbs_wage$QAnotall_08_mj <- rowSums(hbs_wage[,c("QA01_08_mj","QA02_08_mj","QA07_08_mj", "QA08_08_mj", "QA09_08_mj", "QA14_08_mj", "QA15_08_mj")],na.rm = T)
hbs_wage$QAnotall_08_mj <- as.numeric(hbs_wage$QAnotall_08_mj)
summary(hbs_wage$QAnotall_08_mj)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##   0.00000   0.00000   0.00000   0.02597   0.00000 200.00000
str(hbs_wage$QAnotall_08_mj)
##  num [1:7702] 0 0 0 0 0 0 0 0 0 0 ...
plot(density(hbs_wage$QAnotall_08_mj))

Samo topli obrok i prevoz za sve

Ovo racunam da vidim da li i u kojoj mjeri razlikuju prevoz i topli obrok

NOVI FRAME SAMO SA _mj VARIJABLAMA I SOCIO-EK

hbs_wage.NEW <- hbs_wage %>% select(contains(c("SifraDom", "Entity", "naziv_Opcine", "Relat", "Age", "Activ", "Educ","Rur","Sex", "all_mj","notall_","QA07_0","QA08_0")))#all_mj dodajem radi ukupnih prihoda po clanu a Q07_i Q08_ radi toplog obr i prevoza po svakom clanu; notall_mj su mjesecni incomi od rada po osnovu zaposlenosti, rada u bih ali strani poslodavac, usluge(npr.pravnici),poljoprivreda, topli obrok prevoz i smjestaj
names(hbs_wage.NEW)
##  [1] "SifraDom"       "Entity"         "naziv_Opcine"   "Relat_1"       
##  [5] "Relat_2"        "Relat_3"        "Relat_4"        "Relat_5"       
##  [9] "Relat_6"        "Relat_7"        "Relat_8"        "Age_1"         
## [13] "Age_2"          "Age_3"          "Age_4"          "Age_5"         
## [17] "Age_6"          "Age_7"          "Age_8"          "Activ_1"       
## [21] "Activ_2"        "Activ_3"        "Activ_4"        "Activ_5"       
## [25] "Activ_6"        "Activ_7"        "Activ_8"        "Educ_1"        
## [29] "Educ_2"         "Educ_3"         "Educ_4"         "Educ_5"        
## [33] "Educ_6"         "Educ_7"         "Educ_8"         "RurUrb"        
## [37] "Sex_1"          "Sex_2"          "Sex_3"          "Sex_4"         
## [41] "Sex_5"          "Sex_6"          "Sex_7"          "Sex_8"         
## [45] "QA_01_all_mj"   "QA_02_all_mj"   "QA_03_all_mj"   "QA_04_all_mj"  
## [49] "QA_05_all_mj"   "QA_06_all_mj"   "QA_07_all_mj"   "QA_08_all_mj"  
## [53] "QAnotall_01_mj" "QAnotall_02_mj" "QAnotall_03_mj" "QAnotall_04_mj"
## [57] "QAnotall_05_mj" "QAnotall_06_mj" "QAnotall_07_mj" "QAnotall_08_mj"
## [61] "QA07_01_mj"     "QA07_02_mj"     "QA07_03_mj"     "QA07_04_mj"    
## [65] "QA07_05_mj"     "QA07_06_mj"     "QA07_07_mj"     "QA07_08_mj"    
## [69] "QA08_01_mj"     "QA08_02_mj"     "QA08_03_mj"     "QA08_04_mj"    
## [73] "QA08_05_mj"     "QA08_06_mj"     "QA08_07_mj"     "QA08_08_mj"

FAZA 3- FROM WIDE TO LONG

to summarize specific variables - code

library(tidyr)

hbs_wage.NEW.long <- hbs_wage.NEW %>% pivot_longer(cols = c(starts_with("Age"), starts_with("Relat"), starts_with("Activ"),starts_with("Educ"),starts_with ("Sex") ,contains("_mj")),names_to = c(".value", "Relat"), names_pattern =  "(\\w+).*?(\\d)")
dim(hbs_wage.NEW.long)
## [1] 61616    14
names(hbs_wage.NEW.long) #QA07_0 je topli obrok za svakog clana QA_0 je ukupni wage za svakog clana i QA08_0 je prevoz za svakog clana QAnotall wage ali redukovani
##  [1] "SifraDom"     "Entity"       "naziv_Opcine" "RurUrb"       "Relat"       
##  [6] "Age_"         "Relat_"       "Activ_"       "Educ_"        "Sex_"        
## [11] "QA_0"         "QAnotall_0"   "QA07_0"       "QA08_0"

prvo izbaci godine NA i sve ispod 15 godina i preko 80

hbs_wage.NEW.long.1 <- hbs_wage.NEW.long %>% dplyr::filter(14 < Age_ & Age_<80)
dim(hbs_wage.NEW.long.1)
## [1] 18548    14
names(hbs_wage.NEW.long.1)
##  [1] "SifraDom"     "Entity"       "naziv_Opcine" "RurUrb"       "Relat"       
##  [6] "Age_"         "Relat_"       "Activ_"       "Educ_"        "Sex_"        
## [11] "QA_0"         "QAnotall_0"   "QA07_0"       "QA08_0"
#18548 obseryvacija
head(hbs_wage.NEW.long.1)
## # A tibble: 6 × 14
##   SifraDom Entity naziv_Opcine RurUrb    Relat  Age_ Relat_ Activ_ Educ_  Sex_
##      <dbl>  <dbl> <chr>        <dbl+lbl> <chr> <dbl>  <dbl>  <dbl> <dbl> <dbl>
## 1     2258      1 B.Grahovo    1 [Urban] 1        75      1      8     5     1
## 2     2258      1 B.Grahovo    1 [Urban] 2        79      2      8     5     2
## 3     2258      1 B.Grahovo    1 [Urban] 3        47      3      4     5     1
## 4     2273      1 B.Grahovo    1 [Urban] 2        54      3      4     5     1
## 5     2299      1 B.Grahovo    1 [Urban] 1        71      1      8     5     1
## 6     2299      1 B.Grahovo    1 [Urban] 2        64      2      5     4     2
## # ℹ 4 more variables: QA_0 <dbl>, QAnotall_0 <dbl>, QA07_0 <dbl>, QA08_0 <dbl>
#QA_O je wage tj.sva posmatrana primanja
table (hbs_wage.NEW.long.1$Activ_) #koji su employed 6429
## 
##    1    2    3    4    5    6    7    8    9 
## 5676  753 1189 1600 3729 1918  433 3066  184
tapply(hbs_wage.NEW.long.1$QA_0, hbs_wage.NEW.long.1$Activ_, summary)
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0   250.0   600.0   656.7   920.0 18350.0 
## 
## $`2`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0    50.0   175.0   250.9   333.3  3000.0 
## 
## $`3`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    0.00   69.44   25.00 2193.33 
## 
## $`4`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0     0.0     0.0    10.3     0.0  1000.0 
## 
## $`5`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    0.00   11.33    0.00 3000.00 
## 
## $`6`
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##    0.000    0.000    0.000    2.678    0.000 1200.000 
## 
## $`7`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   1.447   0.000 266.667 
## 
## $`8`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    0.00   13.36    0.00 3333.33 
## 
## $`9`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    0.00   59.46    0.00 1500.00
tapply(hbs_wage.NEW.long.1$QAnotall_0, hbs_wage.NEW.long.1$Activ_, summary)
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0    50.0   520.0   580.6   850.0 18350.0 
## 
## $`2`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0     0.0   100.0   192.8   285.0  3000.0 
## 
## $`3`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    0.00   41.38    0.00 2193.33 
## 
## $`4`
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##    0.000    0.000    0.000    5.628    0.000 1000.000 
## 
## $`5`
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##    0.000    0.000    0.000    8.912    0.000 1800.000 
## 
## $`6`
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##    0.000    0.000    0.000    1.521    0.000 1200.000 
## 
## $`7`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   1.186   0.000 266.667 
## 
## $`8`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    0.00   10.35    0.00 3333.33 
## 
## $`9`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00    0.00   28.38    0.00 1500.00
# Zadrzi samo Activ_==1 i/ili  ==2 tj. samo one koji su zaposleni
hbs_wage.NEW.long.1 <- hbs_wage.NEW.long.1 %>%  dplyr::filter(Activ_==1 | Activ_==2)
table (hbs_wage.NEW.long.1$Activ_)
## 
##    1    2 
## 5676  753
dim(hbs_wage.NEW.long.1) #dakle 6429 je ili bilo puno zaposleno ili pola radnog vremena
## [1] 6429   14
table (hbs_wage.NEW.long.1$QA_0>0)
## 
## FALSE  TRUE 
##  1185  5244
#od svih koji su radili 5244 ih je koji su imali prihode vece od 0
table (hbs_wage.NEW.long.1$QAnotall_0 >0)
## 
## FALSE  TRUE 
##  1650  4779
#od svih koji su radili 4779 ih je koji su imali prihode vece od 0

#FAZA 4 SREDI QA_0 ### Remove zeros .2

hbs_wage.NEW.long.2 <- hbs_wage.NEW.long.1 %>% dplyr::filter(QA_0>0)
summary(hbs_wage.NEW.long.2$QA_0)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##     0.083   400.000   630.000   746.782   977.000 18350.000

BRISATI PERCENTILE .2 (all income)

dim(hbs_wage.NEW.long.2)#imam samo 5135 varijabli
## [1] 5135   14
  hbs_wage.NEW.long.2 %>%
  select(naziv_Opcine) %>%
  group_by(naziv_Opcine) %>%
  summarise (
    n = n()
  )%>% 
  arrange (desc(n))%>%
  print(n=137) #izlistalo 29 opstina koje imaju manje od 10 obs
## # A tibble: 130 × 2
##     naziv_Opcine     n
##     <chr>        <int>
##   1 Brcko          307
##   2 Bijeljina      234
##   3 Banja Luka     227
##   4 N.G.Sarajevo   213
##   5 Grad Mostar    188
##   6 Zenica         173
##   7 Travnik        136
##   8 Tuzla          100
##   9 Bihac           93
##  10 Bugojno         91
##  11 Sanski Most     87
##  12 Prijedor        84
##  13 Samac           84
##  14 Vitez           80
##  15 N.Travnik       79
##  16 Doboj           78
##  17 Tesanj          74
##  18 Zavidovici      71
##  19 Cazin           70
##  20 Konjic          69
##  21 C.Sarajevo      67
##  22 Zvornik         66
##  23 Zivinice        65
##  24 N.Sarajevo      64
##  25 V.Kladusa       62
##  26 Modrica         60
##  27 Novi Grad       60
##  28 Visoko          60
##  29 S.Brijeg        59
##  30 Ilidza          58
##  31 Prnjavor        53
##  32 D.Vakuf         52
##  33 S.G.Sarajevo    51
##  34 Gradacac        50
##  35 Gracanica       48
##  36 Teslic          47
##  37 Lopare          46
##  38 Laktasi         45
##  39 Maglaj          45
##  40 Derventa        42
##  41 G.Vakuf         42
##  42 Gorazde         40
##  43 Kakanj          40
##  44 Trebinje        40
##  45 Ljubuski        39
##  46 Lukavac         39
##  47 Kalesija        38
##  48 Kiseljak        38
##  49 Livno           36
##  50 B.Krupa         35
##  51 Brod            33
##  52 Busovaca        33
##  53 Grude           32
##  54 Orasje          32
##  55 Foca - RS       31
##  56 Citluk          29
##  57 Capljina        28
##  58 Gacko           28
##  59 Banovici        26
##  60 Vogosca         26
##  61 Ugljevik        25
##  62 Pale            24
##  63 Kresevo         23
##  64 Rudo            22
##  65 Gradiska        21
##  66 Jajce           21
##  67 Posusje         21
##  68 Rogatica        21
##  69 Drvar           20
##  70 Ilijas          19
##  71 Srbac           19
##  72 I.Ilidza        18
##  73 Kljuc           18
##  74 Ribnik          18
##  75 Tomislavgrad    18
##  76 Vlasenica       18
##  77 Breza           17
##  78 Prozor          17
##  79 Stolac          17
##  80 Visegrad        17
##  81 Cajnice         16
##  82 Kupres          16
##  83 N.Gorazde       16
##  84 K.Dubica        15
##  85 Kladanj         15
##  86 Fojnica         14
##  87 Bileca          13
##  88 Bratunac        13
##  89 Buzim           13
##  90 Glamoc          13
##  91 Kotor Varos     13
##  92 B.Petrovac      12
##  93 Knezevo         12
##  94 Nevesinje       12
##  95 Sokolac         12
##  96 Zepce           12
##  97 Celinac         11
##  98 Doboj-Jug       11
##  99 Mrkonjic        11
## 100 Srebrenica      11
## 101 Srebrenik       11
## 102 Doboj-Istok      9
## 103 Hadzici          9
## 104 Milici           8
## 105 Odzak            8
## 106 Teocak           8
## 107 B.Grahovo        7
## 108 Han Pijesak      7
## 109 Kostajnica       7
## 110 Pelagicevo       7
## 111 Celic            6
## 112 D-Samac          6
## 113 Olovo            6
## 114 Vares            6
## 115 Vukosavlje       6
## 116 Ostra Luka       5
## 117 Usora            5
## 118 Jablanica        4
## 119 Petrovo          4
## 120 Sekovici         4
## 121 Trnovo           4
## 122 Berkovici        3
## 123 Donji Zabar      3
## 124 Kalinovik        3
## 125 Sapna            3
## 126 Sipovo           3
## 127 Osmaci           2
## 128 Krupa na Uni     1
## 129 Neum             1
## 130 Ravno            1

#FAZA 4a SREDI QAnotall_0 ### Remove zeros .2a

hbs_wage.NEW.long.2a <- hbs_wage.NEW.long.1 %>% dplyr::filter(QAnotall_0>0)
summary(hbs_wage.NEW.long.2a$QAnotall_0)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     4.0   400.0   616.7   719.9   950.0 18350.0

BRISATI PERCENTILE .2A NOT ALL INCOME

dim(hbs_wage.NEW.long.2a)#imam samo 4654 varijabli
## [1] 4654   14
hbs_wage.NEW.long.2a %>%
  select(naziv_Opcine) %>%
  group_by(naziv_Opcine) %>%
  summarise (
    n = n()
  )%>% 
  arrange (desc(n))%>%
  print(n=137) #izlistalo 30 opstina koje imaju manje od 10 obs
## # A tibble: 130 × 2
##     naziv_Opcine     n
##     <chr>        <int>
##   1 Brcko          267
##   2 Banja Luka     218
##   3 Bijeljina      213
##   4 N.G.Sarajevo   201
##   5 Grad Mostar    176
##   6 Zenica         163
##   7 Travnik        130
##   8 Bihac           87
##   9 Tuzla           82
##  10 Prijedor        81
##  11 Samac           80
##  12 N.Travnik       78
##  13 Sanski Most     76
##  14 Vitez           76
##  15 Doboj           75
##  16 Bugojno         73
##  17 Cazin           68
##  18 Konjic          64
##  19 Zvornik         63
##  20 Visoko          58
##  21 C.Sarajevo      57
##  22 N.Sarajevo      56
##  23 S.Brijeg        56
##  24 Tesanj          56
##  25 Modrica         55
##  26 Novi Grad       55
##  27 Zavidovici      54
##  28 Zivinice        51
##  29 Ilidza          50
##  30 S.G.Sarajevo    50
##  31 Gradacac        45
##  32 Laktasi         45
##  33 Prnjavor        45
##  34 V.Kladusa       44
##  35 D.Vakuf         43
##  36 Lopare          43
##  37 Gracanica       42
##  38 Trebinje        40
##  39 Kakanj          39
##  40 Gorazde         38
##  41 Teslic          38
##  42 Derventa        37
##  43 Kiseljak        35
##  44 G.Vakuf         34
##  45 B.Krupa         33
##  46 Livno           33
##  47 Ljubuski        32
##  48 Lukavac         32
##  49 Busovaca        31
##  50 Foca - RS       31
##  51 Grude           31
##  52 Maglaj          29
##  53 Orasje          29
##  54 Citluk          28
##  55 Brod            27
##  56 Capljina        27
##  57 Gacko           27
##  58 Banovici        25
##  59 Kalesija        25
##  60 Ugljevik        25
##  61 Vogosca         25
##  62 Pale            24
##  63 Kresevo         23
##  64 Gradiska        21
##  65 Drvar           20
##  66 Rogatica        20
##  67 Jajce           19
##  68 Posusje         19
##  69 Srbac           18
##  70 Vlasenica       18
##  71 Breza           17
##  72 I.Ilidza        17
##  73 Ribnik          17
##  74 Rudo            17
##  75 Ilijas          16
##  76 Kljuc           16
##  77 Kupres          16
##  78 Stolac          16
##  79 Cajnice         15
##  80 Visegrad        15
##  81 Fojnica         14
##  82 K.Dubica        14
##  83 Bileca          13
##  84 Bratunac        13
##  85 Buzim           13
##  86 Glamoc          13
##  87 Kladanj         13
##  88 Kotor Varos     13
##  89 Prozor          13
##  90 Knezevo         12
##  91 Nevesinje       12
##  92 Sokolac         12
##  93 Tomislavgrad    12
##  94 B.Petrovac      11
##  95 Celinac         11
##  96 Srebrenik       11
##  97 Doboj-Jug       10
##  98 Mrkonjic        10
##  99 N.Gorazde       10
## 100 Srebrenica      10
## 101 Doboj-Istok      9
## 102 Hadzici          9
## 103 B.Grahovo        7
## 104 Han Pijesak      7
## 105 Kostajnica       7
## 106 Milici           7
## 107 Odzak            7
## 108 Teocak           7
## 109 Zepce            7
## 110 Celic            6
## 111 D-Samac          6
## 112 Pelagicevo       6
## 113 Vares            6
## 114 Vukosavlje       6
## 115 Olovo            5
## 116 Ostra Luka       5
## 117 Sekovici         4
## 118 Trnovo           4
## 119 Usora            4
## 120 Berkovici        3
## 121 Donji Zabar      3
## 122 Jablanica        3
## 123 Kalinovik        3
## 124 Petrovo          3
## 125 Sipovo           3
## 126 Osmaci           2
## 127 Krupa na Uni     1
## 128 Neum             1
## 129 Ravno            1
## 130 Sapna            1
unique(hbs_wage$naziv_Opcine) #137 opcina
##   [1] "B.Grahovo"    "B.Krupa"      "B.Petrovac"   "Banovici"     "Banja Luka"  
##   [6] "Berkovici"    "Bihac"        "Bijeljina"    "Bileca"       "Bratunac"    
##  [11] "Brcko"        "Breza"        "Brod"         "Bugojno"      "Busovaca"    
##  [16] "Buzim"        "C.Sarajevo"   "Cajnice"      "Capljina"     "Cazin"       
##  [21] "Celic"        "Celinac"      "Citluk"       "D-Samac"      "D.Vakuf"     
##  [26] "Derventa"     "Doboj"        "Doboj-Istok"  "Doboj-Jug"    "Dobretici"   
##  [31] "Donji Zabar"  "Drvar"        "Foca"         "Foca - RS"    "Fojnica"     
##  [36] "G.Vakuf"      "Gacko"        "Glamoc"       "Gorazde"      "Gracanica"   
##  [41] "Grad Mostar"  "Gradacac"     "Gradiska"     "Grude"        "Hadzici"     
##  [46] "Han Pijesak"  "I.Ilidza"     "I.N.Sarajevo" "I.Stari Grad" "Ilidza"      
##  [51] "Ilijas"       "Jablanica"    "Jajce"        "Jezero"       "K.Dubica"    
##  [56] "Kakanj"       "Kalesija"     "Kalinovik"    "Kiseljak"     "Kladanj"     
##  [61] "Kljuc"        "Knezevo"      "Konjic"       "Kostajnica"   "Kotor Varos" 
##  [66] "Kresevo"      "Krupa na Uni" "Kupres"       "Laktasi"      "Livno"       
##  [71] "Lopare"       "Lukavac"      "Ljubinje"     "Ljubuski"     "Maglaj"      
##  [76] "Milici"       "Modrica"      "Mrkonjic"     "N.G.Sarajevo" "N.Gorazde"   
##  [81] "N.Sarajevo"   "N.Travnik"    "Neum"         "Nevesinje"    "Novi Grad"   
##  [86] "Odzak"        "Olovo"        "Orasje"       "Osmaci"       "Ostra Luka"  
##  [91] "Pale"         "Pale-FBiH"    "Pelagicevo"   "Petrovo"      "Posusje"     
##  [96] "Prijedor"     "Prnjavor"     "Prozor"       "Ravno"        "Ribnik"      
## [101] "Rogatica"     "Rudo"         "S.Brijeg"     "S.G.Sarajevo" "Samac"       
## [106] "Sanski Most"  "Sapna"        "Sekovici"     "Sipovo"       "Sokolac"     
## [111] "Srbac"        "Srebrenica"   "Srebrenik"    "Stolac"       "Teocak"      
## [116] "Tesanj"       "Teslic"       "Tomislavgrad" "Travnik"      "Trebinje"    
## [121] "Trnovo"       "Tuzla"        "Ugljevik"     "Usora"        "V.Kladusa"   
## [126] "Vares"        "Visegrad"     "Visoko"       "Vitez"        "Vlasenica"   
## [131] "Vogosca"      "Vukosavlje"   "Zavidovici"   "Zenica"       "Zepce"       
## [136] "Zivinice"     "Zvornik"
unique(hbs_wage.NEW.long.2$naziv_Opcine) #130 
##   [1] "B.Grahovo"    "B.Krupa"      "B.Petrovac"   "Banovici"     "Banja Luka"  
##   [6] "Berkovici"    "Bihac"        "Bijeljina"    "Bileca"       "Bratunac"    
##  [11] "Brcko"        "Breza"        "Brod"         "Bugojno"      "Busovaca"    
##  [16] "Buzim"        "C.Sarajevo"   "Cajnice"      "Capljina"     "Cazin"       
##  [21] "Celic"        "Celinac"      "Citluk"       "D-Samac"      "D.Vakuf"     
##  [26] "Derventa"     "Doboj"        "Doboj-Istok"  "Doboj-Jug"    "Donji Zabar" 
##  [31] "Drvar"        "Foca - RS"    "Fojnica"      "G.Vakuf"      "Gacko"       
##  [36] "Glamoc"       "Gorazde"      "Gracanica"    "Grad Mostar"  "Gradacac"    
##  [41] "Gradiska"     "Grude"        "Hadzici"      "Han Pijesak"  "I.Ilidza"    
##  [46] "Ilidza"       "Ilijas"       "Jablanica"    "Jajce"        "K.Dubica"    
##  [51] "Kakanj"       "Kalesija"     "Kalinovik"    "Kiseljak"     "Kladanj"     
##  [56] "Kljuc"        "Knezevo"      "Konjic"       "Kostajnica"   "Kotor Varos" 
##  [61] "Kresevo"      "Krupa na Uni" "Kupres"       "Laktasi"      "Livno"       
##  [66] "Lopare"       "Lukavac"      "Ljubuski"     "Maglaj"       "Milici"      
##  [71] "Modrica"      "Mrkonjic"     "N.G.Sarajevo" "N.Gorazde"    "N.Sarajevo"  
##  [76] "N.Travnik"    "Neum"         "Nevesinje"    "Novi Grad"    "Odzak"       
##  [81] "Olovo"        "Orasje"       "Osmaci"       "Ostra Luka"   "Pale"        
##  [86] "Pelagicevo"   "Petrovo"      "Posusje"      "Prijedor"     "Prnjavor"    
##  [91] "Prozor"       "Ravno"        "Ribnik"       "Rogatica"     "Rudo"        
##  [96] "S.Brijeg"     "S.G.Sarajevo" "Samac"        "Sanski Most"  "Sapna"       
## [101] "Sekovici"     "Sipovo"       "Sokolac"      "Srbac"        "Srebrenica"  
## [106] "Srebrenik"    "Stolac"       "Teocak"       "Tesanj"       "Teslic"      
## [111] "Tomislavgrad" "Travnik"      "Trebinje"     "Trnovo"       "Tuzla"       
## [116] "Ugljevik"     "Usora"        "V.Kladusa"    "Vares"        "Visegrad"    
## [121] "Visoko"       "Vitez"        "Vlasenica"    "Vogosca"      "Vukosavlje"  
## [126] "Zavidovici"   "Zenica"       "Zepce"        "Zivinice"     "Zvornik"
unique(hbs_wage.NEW.long.2a$naziv_Opcine) #131
##   [1] "B.Grahovo"    "B.Krupa"      "B.Petrovac"   "Banovici"     "Banja Luka"  
##   [6] "Berkovici"    "Bihac"        "Bijeljina"    "Bileca"       "Bratunac"    
##  [11] "Brcko"        "Breza"        "Brod"         "Bugojno"      "Busovaca"    
##  [16] "Buzim"        "C.Sarajevo"   "Cajnice"      "Capljina"     "Cazin"       
##  [21] "Celic"        "Celinac"      "Citluk"       "D-Samac"      "D.Vakuf"     
##  [26] "Derventa"     "Doboj"        "Doboj-Istok"  "Doboj-Jug"    "Donji Zabar" 
##  [31] "Drvar"        "Foca - RS"    "Fojnica"      "G.Vakuf"      "Gacko"       
##  [36] "Glamoc"       "Gorazde"      "Gracanica"    "Grad Mostar"  "Gradacac"    
##  [41] "Gradiska"     "Grude"        "Hadzici"      "Han Pijesak"  "I.Ilidza"    
##  [46] "Ilidza"       "Ilijas"       "Jablanica"    "Jajce"        "K.Dubica"    
##  [51] "Kakanj"       "Kalesija"     "Kalinovik"    "Kiseljak"     "Kladanj"     
##  [56] "Kljuc"        "Knezevo"      "Konjic"       "Kostajnica"   "Kotor Varos" 
##  [61] "Kresevo"      "Krupa na Uni" "Kupres"       "Laktasi"      "Livno"       
##  [66] "Lopare"       "Lukavac"      "Ljubuski"     "Maglaj"       "Milici"      
##  [71] "Modrica"      "Mrkonjic"     "N.G.Sarajevo" "N.Gorazde"    "N.Sarajevo"  
##  [76] "N.Travnik"    "Neum"         "Nevesinje"    "Novi Grad"    "Odzak"       
##  [81] "Olovo"        "Orasje"       "Osmaci"       "Ostra Luka"   "Pale"        
##  [86] "Pelagicevo"   "Petrovo"      "Posusje"      "Prijedor"     "Prnjavor"    
##  [91] "Prozor"       "Ravno"        "Ribnik"       "Rogatica"     "Rudo"        
##  [96] "S.Brijeg"     "S.G.Sarajevo" "Samac"        "Sanski Most"  "Sapna"       
## [101] "Sekovici"     "Sipovo"       "Sokolac"      "Srbac"        "Srebrenica"  
## [106] "Srebrenik"    "Stolac"       "Teocak"       "Tesanj"       "Teslic"      
## [111] "Tomislavgrad" "Travnik"      "Trebinje"     "Trnovo"       "Tuzla"       
## [116] "Ugljevik"     "Usora"        "V.Kladusa"    "Vares"        "Visegrad"    
## [121] "Visoko"       "Vitez"        "Vlasenica"    "Vogosca"      "Vukosavlje"  
## [126] "Zavidovici"   "Zenica"       "Zepce"        "Zivinice"     "Zvornik"
#7 se ne nalaye u hbs_wage.NEW.long.2 jer vec su izbacene dakle 30+7 = 37 opstine manje

#FAZA 5 BRISATI OPSTINE SA MANJE OD 10 OBZERVACIJA=hbs_wage.NEW.long.2

Delete low frequency obs (<10) ne mozemo ih stavljati u model - all income

freq.less.10 <- hbs_wage.NEW.long.2 %>%
  dplyr::select(naziv_Opcine) %>%
  group_by(naziv_Opcine) %>%
  summarise (
    n = n()
  )%>% dplyr::filter (n<10)
hbs_wage.NEW.long.3<- hbs_wage.NEW.long.2[!hbs_wage.NEW.long.2$naziv_Opcine %in% freq.less.10$naziv_Opcine,]
dim(hbs_wage.NEW.long.3)
## [1] 4989   14
#4989 obzervacija

Provjeri da li su izbrisane sve ispod 10

hbs_wage.NEW.long.3 %>%
  select(naziv_Opcine) %>%
  group_by(naziv_Opcine) %>%
  summarise (
    n = n()
  )%>% 
  arrange ((n))%>%
  print(n=10) #sve su izbrisane
## # A tibble: 101 × 2
##    naziv_Opcine     n
##    <chr>        <int>
##  1 Celinac         11
##  2 Doboj-Jug       11
##  3 Mrkonjic        11
##  4 Srebrenica      11
##  5 Srebrenik       11
##  6 B.Petrovac      12
##  7 Knezevo         12
##  8 Nevesinje       12
##  9 Sokolac         12
## 10 Zepce           12
## # ℹ 91 more rows
unique(hbs_wage.NEW.long.3$naziv_Opcine)
##   [1] "B.Krupa"      "B.Petrovac"   "Banovici"     "Banja Luka"   "Bihac"       
##   [6] "Bijeljina"    "Bileca"       "Bratunac"     "Brcko"        "Breza"       
##  [11] "Brod"         "Bugojno"      "Busovaca"     "Buzim"        "C.Sarajevo"  
##  [16] "Cajnice"      "Capljina"     "Cazin"        "Celinac"      "Citluk"      
##  [21] "D.Vakuf"      "Derventa"     "Doboj"        "Doboj-Jug"    "Drvar"       
##  [26] "Foca - RS"    "Fojnica"      "G.Vakuf"      "Gacko"        "Glamoc"      
##  [31] "Gorazde"      "Gracanica"    "Grad Mostar"  "Gradacac"     "Gradiska"    
##  [36] "Grude"        "I.Ilidza"     "Ilidza"       "Ilijas"       "Jajce"       
##  [41] "K.Dubica"     "Kakanj"       "Kalesija"     "Kiseljak"     "Kladanj"     
##  [46] "Kljuc"        "Knezevo"      "Konjic"       "Kotor Varos"  "Kresevo"     
##  [51] "Kupres"       "Laktasi"      "Livno"        "Lopare"       "Lukavac"     
##  [56] "Ljubuski"     "Maglaj"       "Modrica"      "Mrkonjic"     "N.G.Sarajevo"
##  [61] "N.Gorazde"    "N.Sarajevo"   "N.Travnik"    "Nevesinje"    "Novi Grad"   
##  [66] "Orasje"       "Pale"         "Posusje"      "Prijedor"     "Prnjavor"    
##  [71] "Prozor"       "Ribnik"       "Rogatica"     "Rudo"         "S.Brijeg"    
##  [76] "S.G.Sarajevo" "Samac"        "Sanski Most"  "Sokolac"      "Srbac"       
##  [81] "Srebrenica"   "Srebrenik"    "Stolac"       "Tesanj"       "Teslic"      
##  [86] "Tomislavgrad" "Travnik"      "Trebinje"     "Tuzla"        "Ugljevik"    
##  [91] "V.Kladusa"    "Visegrad"     "Visoko"       "Vitez"        "Vlasenica"   
##  [96] "Vogosca"      "Zavidovici"   "Zenica"       "Zepce"        "Zivinice"    
## [101] "Zvornik"
#101 opcina od ukupno 137 koje su u HBS, dakle u wage- imam manje 36 opstina

#FAZA 5 BRISATI OPSTINE SA MANJE OD 10 OBZERVACIJA=hbs_wage.NEW.long.2a - not all income

Delete low frequency obs (<10) ne mozemo ih stavljati u model

Provjeri da li su izbrisane sve ispod 10

hbs_wage.NEW.long.3a %>%
  select(naziv_Opcine) %>%
  group_by(naziv_Opcine) %>%
  summarise (
    n = n()
  )%>% 
  arrange ((n))%>%
  print(n=10) #sve su izbrisane
## # A tibble: 100 × 2
##    naziv_Opcine     n
##    <chr>        <int>
##  1 Doboj-Jug       10
##  2 Mrkonjic        10
##  3 N.Gorazde       10
##  4 Srebrenica      10
##  5 B.Petrovac      11
##  6 Celinac         11
##  7 Srebrenik       11
##  8 Knezevo         12
##  9 Nevesinje       12
## 10 Sokolac         12
## # ℹ 90 more rows
unique(hbs_wage.NEW.long.3a$naziv_Opcine)
##   [1] "B.Krupa"      "B.Petrovac"   "Banovici"     "Banja Luka"   "Bihac"       
##   [6] "Bijeljina"    "Bileca"       "Bratunac"     "Brcko"        "Breza"       
##  [11] "Brod"         "Bugojno"      "Busovaca"     "Buzim"        "C.Sarajevo"  
##  [16] "Cajnice"      "Capljina"     "Cazin"        "Celinac"      "Citluk"      
##  [21] "D.Vakuf"      "Derventa"     "Doboj"        "Doboj-Jug"    "Drvar"       
##  [26] "Foca - RS"    "Fojnica"      "G.Vakuf"      "Gacko"        "Glamoc"      
##  [31] "Gorazde"      "Gracanica"    "Grad Mostar"  "Gradacac"     "Gradiska"    
##  [36] "Grude"        "I.Ilidza"     "Ilidza"       "Ilijas"       "Jajce"       
##  [41] "K.Dubica"     "Kakanj"       "Kalesija"     "Kiseljak"     "Kladanj"     
##  [46] "Kljuc"        "Knezevo"      "Konjic"       "Kotor Varos"  "Kresevo"     
##  [51] "Kupres"       "Laktasi"      "Livno"        "Lopare"       "Lukavac"     
##  [56] "Ljubuski"     "Maglaj"       "Modrica"      "Mrkonjic"     "N.G.Sarajevo"
##  [61] "N.Gorazde"    "N.Sarajevo"   "N.Travnik"    "Nevesinje"    "Novi Grad"   
##  [66] "Orasje"       "Pale"         "Posusje"      "Prijedor"     "Prnjavor"    
##  [71] "Prozor"       "Ribnik"       "Rogatica"     "Rudo"         "S.Brijeg"    
##  [76] "S.G.Sarajevo" "Samac"        "Sanski Most"  "Sokolac"      "Srbac"       
##  [81] "Srebrenica"   "Srebrenik"    "Stolac"       "Tesanj"       "Teslic"      
##  [86] "Tomislavgrad" "Travnik"      "Trebinje"     "Tuzla"        "Ugljevik"    
##  [91] "V.Kladusa"    "Visegrad"     "Visoko"       "Vitez"        "Vlasenica"   
##  [96] "Vogosca"      "Zavidovici"   "Zenica"       "Zivinice"     "Zvornik"
#100 opcina od ukupno 137 koje su u HBS, dakle u wage- imam manje 37 opstina

FAZA 6 ISPITAJ VARIJABLE

Rename varijables - all income

library(dplyr)
WI.df <- hbs_wage.NEW.long.3
names(WI.df)
##  [1] "SifraDom"     "Entity"       "naziv_Opcine" "RurUrb"       "Relat"       
##  [6] "Age_"         "Relat_"       "Activ_"       "Educ_"        "Sex_"        
## [11] "QA_0"         "QAnotall_0"   "QA07_0"       "QA08_0"
WI.df <- rename(WI.df, c(wages = QA_0, Age = Age_, Active = Activ_, Educ = Educ_, Munic = naziv_Opcine))

rename not all income

library(dplyr)
WI.dfa <- hbs_wage.NEW.long.3a
names(WI.dfa)
##  [1] "SifraDom"     "Entity"       "naziv_Opcine" "RurUrb"       "Relat"       
##  [6] "Age_"         "Relat_"       "Activ_"       "Educ_"        "Sex_"        
## [11] "QA_0"         "QAnotall_0"   "QA07_0"       "QA08_0"
WI.dfa <- rename(WI.dfa, c(wages = QAnotall_0, Age = Age_, Active = Activ_, Educ = Educ_, Munic = naziv_Opcine))

Active

Status tekuce zaposlenosti: 1. puno radno vrijeme 2. pola radnog vremena Od 3-9 je izbaceno 3. nezaposlen 4 - trazi prvo zaposlenje 5 - domacica 6 - student 7 - nesposoban za rad 8 - penzioner 9 - ostalo #### Educ

Steceno obrazovanje: 1 - bez skole; 2- nepotpuna osnovna 8.g.skola 3 - nepotpuna osnovna 9.g. skola; 4-osnovna skola, 5-srednja skola, 6-specijalizacia poslije s.s; 7 - Visa skola; 8 - Fakultet; 9 - Master; 10 - Doktorat

sredi Educ varijablu u notall income

WI.dfa <- WI.dfa %>% mutate(Full.time = case_when(Active == 1 ~"full time", Active == 2 ~"part time"), 
                          Educ.1 = case_when(Educ %in% c(1,2,3) ~ "no elementary", Educ  == 4 ~ "elementary", Educ %in% c(5,6) ~ "high schl", Educ %in% c(7,8,9,10) ~ "faculty"),
                          Educ.2 = case_when(Educ == 1 ~ "no education",
                                             Educ %in% c(2,3) ~ "no elementary",
                                             Educ  == 4 ~ "elementary",
                                             Educ %in% c(5,6) ~ "high schl",
                                             Educ %in% c(7) ~ "college",
                                             Educ %in% c(8,9,10) ~ "university")) 

#Relevel Educ.2

WI.dfa$Educ.2 <- forcats::fct_relevel (WI.dfa$Educ.2, "no education","no elementary", "elementary", "high schl","college", "university")
prop.table(table(WI.dfa$Educ.2))
## 
##  no education no elementary    elementary     high schl       college 
##   0.007093771   0.011305697   0.124584349   0.667922855   0.037463977 
##    university 
##   0.151629350

Check if it is ok

Active

dim (WI.dfa)
## [1] 4511   17
unique(WI.dfa$Munic)
##   [1] "B.Krupa"      "B.Petrovac"   "Banovici"     "Banja Luka"   "Bihac"       
##   [6] "Bijeljina"    "Bileca"       "Bratunac"     "Brcko"        "Breza"       
##  [11] "Brod"         "Bugojno"      "Busovaca"     "Buzim"        "C.Sarajevo"  
##  [16] "Cajnice"      "Capljina"     "Cazin"        "Celinac"      "Citluk"      
##  [21] "D.Vakuf"      "Derventa"     "Doboj"        "Doboj-Jug"    "Drvar"       
##  [26] "Foca - RS"    "Fojnica"      "G.Vakuf"      "Gacko"        "Glamoc"      
##  [31] "Gorazde"      "Gracanica"    "Grad Mostar"  "Gradacac"     "Gradiska"    
##  [36] "Grude"        "I.Ilidza"     "Ilidza"       "Ilijas"       "Jajce"       
##  [41] "K.Dubica"     "Kakanj"       "Kalesija"     "Kiseljak"     "Kladanj"     
##  [46] "Kljuc"        "Knezevo"      "Konjic"       "Kotor Varos"  "Kresevo"     
##  [51] "Kupres"       "Laktasi"      "Livno"        "Lopare"       "Lukavac"     
##  [56] "Ljubuski"     "Maglaj"       "Modrica"      "Mrkonjic"     "N.G.Sarajevo"
##  [61] "N.Gorazde"    "N.Sarajevo"   "N.Travnik"    "Nevesinje"    "Novi Grad"   
##  [66] "Orasje"       "Pale"         "Posusje"      "Prijedor"     "Prnjavor"    
##  [71] "Prozor"       "Ribnik"       "Rogatica"     "Rudo"         "S.Brijeg"    
##  [76] "S.G.Sarajevo" "Samac"        "Sanski Most"  "Sokolac"      "Srbac"       
##  [81] "Srebrenica"   "Srebrenik"    "Stolac"       "Tesanj"       "Teslic"      
##  [86] "Tomislavgrad" "Travnik"      "Trebinje"     "Tuzla"        "Ugljevik"    
##  [91] "V.Kladusa"    "Visegrad"     "Visoko"       "Vitez"        "Vlasenica"   
##  [96] "Vogosca"      "Zavidovici"   "Zenica"       "Zivinice"     "Zvornik"
table (WI.dfa$Full.time)
## 
## full time part time 
##      4078       433
round (prop.table(table(WI.dfa$Active))*100,1)
## 
##    1    2 
## 90.4  9.6

##Educ

table (WI.dfa$Educ)
## 
##    1    2    3    4    5    6    7    8    9   10 
##   32   47    4  562 2989   24  169  608   69    7
table (WI.dfa$Educ.1)
## 
##    elementary       faculty     high schl no elementary 
##           562           853          3013            83
round (prop.table(table(WI.dfa$Educ.1))*100,2)
## 
##    elementary       faculty     high schl no elementary 
##         12.46         18.91         66.79          1.84

Relevel

Full.time

library(forcats)
WI.dfa$Full.time <- fct_relevel (WI.dfa$Full.time, "full time", "part time")
table(WI.dfa$Full.time)
## 
## full time part time 
##      4078       433
str(WI.dfa$Full.time)
##  Factor w/ 2 levels "full time","part time": 1 1 1 1 1 1 1 1 1 1 ...

Educ

Sada treba relevel varijablu da no elementary bude referentna vrijednost

Sex - notall income

round (prop.table(table(WI.dfa$Sex_))*100,1)
## 
##    1    2 
## 64.4 35.6

#FAZA 7 BUILD UP A MODEL

Mincer earnings function log(wages)

#Isti model koji je winner kad uzmem sve opcije za Active
library(texreg)
## Version:  1.39.4
## Date:     2024-07-23
## Author:   Philip Leifeld (University of Manchester)
## 
## Consider submitting praise using the praise or praise_interactive functions.
## Please cite the JSS article in your publications -- see citation("texreg").
## 
## Attaching package: 'texreg'
## The following object is masked from 'package:tidyr':
## 
##     extract
#not all income
WI.3a <- lm (log(wages)~ Age + as.numeric(Age^2)+ factor (Sex_) + Educ.1 + factor(Full.time) + factor (Munic) , data = WI.dfa) # No rur. urb THE WINNING MODEL

summary(WI.3a)#only 31 sign. municipal
## 
## Call:
## lm(formula = log(wages) ~ Age + as.numeric(Age^2) + factor(Sex_) + 
##     Educ.1 + factor(Full.time) + factor(Munic), data = WI.dfa)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.54025 -0.23473  0.06767  0.32865  2.32918 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 4.882e+00  1.385e-01  35.239  < 2e-16 ***
## Age                         4.106e-02  4.939e-03   8.315  < 2e-16 ***
## as.numeric(Age^2)          -3.956e-04  5.834e-05  -6.781 1.35e-11 ***
## factor(Sex_)2              -1.462e-01  1.734e-02  -8.431  < 2e-16 ***
## Educ.1elementary            1.655e-01  6.756e-02   2.450 0.014338 *  
## Educ.1high schl             4.823e-01  6.571e-02   7.340 2.53e-13 ***
## Educ.1faculty               9.292e-01  6.791e-02  13.683  < 2e-16 ***
## factor(Full.time)part time -7.410e-01  3.014e-02 -24.587  < 2e-16 ***
## factor(Munic)B.Petrovac    -1.828e-01  1.881e-01  -0.972 0.331014    
## factor(Munic)Banovici       3.017e-01  1.435e-01   2.102 0.035622 *  
## factor(Munic)Banja Luka     1.150e-01  1.018e-01   1.130 0.258490    
## factor(Munic)Bihac         -8.512e-02  1.110e-01  -0.767 0.443091    
## factor(Munic)Bijeljina     -1.147e-01  1.011e-01  -1.135 0.256639    
## factor(Munic)Bileca         4.909e-02  1.771e-01   0.277 0.781594    
## factor(Munic)Bratunac       3.501e-01  1.768e-01   1.981 0.047707 *  
## factor(Munic)Brcko          1.161e-01  1.001e-01   1.160 0.246258    
## factor(Munic)Breza          2.315e-01  1.615e-01   1.433 0.151933    
## factor(Munic)Brod          -2.568e-01  1.402e-01  -1.832 0.067015 .  
## factor(Munic)Bugojno        3.926e-02  1.140e-01   0.344 0.730521    
## factor(Munic)Busovaca       6.027e-02  1.354e-01   0.445 0.656223    
## factor(Munic)Buzim         -6.659e-01  1.767e-01  -3.768 0.000167 ***
## factor(Munic)C.Sarajevo     3.420e-01  1.193e-01   2.867 0.004157 ** 
## factor(Munic)Cajnice       -1.785e-01  1.686e-01  -1.059 0.289878    
## factor(Munic)Capljina       4.760e-01  1.400e-01   3.400 0.000679 ***
## factor(Munic)Cazin         -1.264e-01  1.145e-01  -1.104 0.269596    
## factor(Munic)Celinac       -1.168e-01  1.880e-01  -0.621 0.534620    
## factor(Munic)Citluk         2.928e-01  1.391e-01   2.105 0.035380 *  
## factor(Munic)D.Vakuf       -1.137e-01  1.259e-01  -0.904 0.366228    
## factor(Munic)Derventa      -4.717e-01  1.294e-01  -3.646 0.000270 ***
## factor(Munic)Doboj          1.505e-01  1.133e-01   1.328 0.184221    
## factor(Munic)Doboj-Jug     -1.087e-01  1.950e-01  -0.557 0.577387    
## factor(Munic)Drvar          2.669e-02  1.535e-01   0.174 0.861975    
## factor(Munic)Foca - RS     -3.240e-02  1.355e-01  -0.239 0.811095    
## factor(Munic)Fojnica        2.497e-01  1.723e-01   1.449 0.147484    
## factor(Munic)G.Vakuf       -1.004e-01  1.326e-01  -0.757 0.449049    
## factor(Munic)Gacko          2.474e-01  1.404e-01   1.762 0.078135 .  
## factor(Munic)Glamoc         2.371e-01  1.773e-01   1.337 0.181347    
## factor(Munic)Gorazde        2.352e-01  1.289e-01   1.825 0.068039 .  
## factor(Munic)Gracanica     -1.288e-01  1.260e-01  -1.022 0.306996    
## factor(Munic)Grad Mostar    3.323e-01  1.032e-01   3.219 0.001296 ** 
## factor(Munic)Gradacac       7.144e-02  1.237e-01   0.578 0.563598    
## factor(Munic)Gradiska      -4.956e-02  1.509e-01  -0.328 0.742638    
## factor(Munic)Grude          4.016e-01  1.354e-01   2.965 0.003044 ** 
## factor(Munic)I.Ilidza      -1.296e-02  1.615e-01  -0.080 0.936055    
## factor(Munic)Ilidza         5.109e-01  1.214e-01   4.209 2.61e-05 ***
## factor(Munic)Ilijas         1.766e-01  1.646e-01   1.073 0.283470    
## factor(Munic)Jajce          2.768e-01  1.556e-01   1.779 0.075271 .  
## factor(Munic)K.Dubica      -1.379e-01  1.723e-01  -0.801 0.423451    
## factor(Munic)Kakanj         7.807e-02  1.280e-01   0.610 0.541813    
## factor(Munic)Kalesija      -1.259e-01  1.436e-01  -0.876 0.380820    
## factor(Munic)Kiseljak       2.476e-01  1.314e-01   1.884 0.059658 .  
## factor(Munic)Kladanj        1.331e-01  1.768e-01   0.753 0.451400    
## factor(Munic)Kljuc         -1.006e-02  1.646e-01  -0.061 0.951270    
## factor(Munic)Knezevo       -2.828e-02  1.821e-01  -0.155 0.876559    
## factor(Munic)Konjic         2.337e-01  1.161e-01   2.012 0.044256 *  
## factor(Munic)Kotor Varos    1.407e-01  1.768e-01   0.796 0.426000    
## factor(Munic)Kresevo        3.693e-01  1.471e-01   2.511 0.012066 *  
## factor(Munic)Kupres         2.037e-01  1.643e-01   1.240 0.215175    
## factor(Munic)Laktasi        2.353e-02  1.241e-01   0.190 0.849623    
## factor(Munic)Livno          4.060e-01  1.331e-01   3.050 0.002305 ** 
## factor(Munic)Lopare        -1.237e-02  1.261e-01  -0.098 0.921844    
## factor(Munic)Lukavac        1.165e-01  1.343e-01   0.867 0.385883    
## factor(Munic)Ljubuski       4.160e-01  1.345e-01   3.093 0.001995 ** 
## factor(Munic)Maglaj         6.616e-02  1.378e-01   0.480 0.631132    
## factor(Munic)Modrica       -6.353e-02  1.195e-01  -0.532 0.595000    
## factor(Munic)Mrkonjic       2.657e-01  1.952e-01   1.361 0.173453    
## factor(Munic)N.G.Sarajevo   3.454e-01  1.022e-01   3.379 0.000735 ***
## factor(Munic)N.Gorazde     -4.083e-01  1.950e-01  -2.094 0.036340 *  
## factor(Munic)N.Sarajevo     4.299e-01  1.194e-01   3.600 0.000321 ***
## factor(Munic)N.Travnik     -1.673e-01  1.125e-01  -1.487 0.137135    
## factor(Munic)Nevesinje     -3.494e-02  1.822e-01  -0.192 0.847908    
## factor(Munic)Novi Grad     -5.045e-02  1.193e-01  -0.423 0.672377    
## factor(Munic)Orasje         3.446e-01  1.378e-01   2.501 0.012413 *  
## factor(Munic)Pale           7.309e-02  1.452e-01   0.503 0.614781    
## factor(Munic)Posusje        4.060e-01  1.558e-01   2.607 0.009176 ** 
## factor(Munic)Prijedor       1.439e-01  1.120e-01   1.285 0.198752    
## factor(Munic)Prnjavor       1.964e-02  1.242e-01   0.158 0.874379    
## factor(Munic)Prozor         2.234e-01  1.772e-01   1.261 0.207409    
## factor(Munic)Ribnik        -1.957e-02  1.614e-01  -0.121 0.903513    
## factor(Munic)Rogatica       1.831e-01  1.536e-01   1.192 0.233289    
## factor(Munic)Rudo          -1.642e-01  1.615e-01  -1.017 0.309369    
## factor(Munic)S.Brijeg       6.098e-01  1.190e-01   5.124 3.13e-07 ***
## factor(Munic)S.G.Sarajevo   3.636e-01  1.218e-01   2.986 0.002844 ** 
## factor(Munic)Samac          2.103e-02  1.124e-01   0.187 0.851528    
## factor(Munic)Sanski Most   -1.254e-02  1.129e-01  -0.111 0.911530    
## factor(Munic)Sokolac       -1.643e-01  1.824e-01  -0.901 0.367796    
## factor(Munic)Srbac          5.756e-02  1.583e-01   0.363 0.716253    
## factor(Munic)Srebrenica     3.278e-01  1.949e-01   1.681 0.092769 .  
## factor(Munic)Srebrenik      1.607e-01  1.879e-01   0.856 0.392305    
## factor(Munic)Stolac         3.132e-01  1.648e-01   1.901 0.057387 .  
## factor(Munic)Tesanj         1.299e-03  1.188e-01   0.011 0.991277    
## factor(Munic)Teslic        -3.769e-02  1.288e-01  -0.293 0.769767    
## factor(Munic)Tomislavgrad   1.667e-01  1.821e-01   0.916 0.359887    
## factor(Munic)Travnik        3.328e-01  1.056e-01   3.152 0.001635 ** 
## factor(Munic)Trebinje       3.394e-02  1.274e-01   0.266 0.790013    
## factor(Munic)Tuzla          1.673e-01  1.119e-01   1.495 0.134965    
## factor(Munic)Ugljevik       1.734e-01  1.434e-01   1.209 0.226649    
## factor(Munic)V.Kladusa     -2.492e-01  1.243e-01  -2.005 0.045074 *  
## factor(Munic)Visegrad      -1.453e-01  1.685e-01  -0.862 0.388509    
## factor(Munic)Visoko         1.286e-01  1.181e-01   1.089 0.276360    
## factor(Munic)Vitez         -6.815e-02  1.131e-01  -0.602 0.546978    
## factor(Munic)Vlasenica      1.152e-01  1.583e-01   0.728 0.466599    
## factor(Munic)Vogosca        1.412e-01  1.435e-01   0.983 0.325438    
## factor(Munic)Zavidovici    -4.154e-02  1.198e-01  -0.347 0.728695    
## factor(Munic)Zenica         1.013e-01  1.038e-01   0.975 0.329371    
## factor(Munic)Zivinice      -5.412e-02  1.208e-01  -0.448 0.654192    
## factor(Munic)Zvornik       -3.265e-01  1.163e-01  -2.807 0.005018 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5385 on 4404 degrees of freedom
## Multiple R-squared:  0.4012, Adjusted R-squared:  0.3868 
## F-statistic: 27.84 on 106 and 4404 DF,  p-value: < 2.2e-16
names(WI.dfa)
##  [1] "SifraDom"  "Entity"    "Munic"     "RurUrb"    "Relat"     "Age"      
##  [7] "Relat_"    "Active"    "Educ"      "Sex_"      "QA_0"      "wages"    
## [13] "QA07_0"    "QA08_0"    "Full.time" "Educ.1"    "Educ.2"
summary (WI.dfa$Age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   17.00   33.00   43.00   42.49   52.00   79.00
sd (WI.dfa$Age)
## [1] 11.56855
summary (WI.dfa$wages)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    52.5   400.0   630.0   701.0   940.0  2300.0
sd (WI.dfa$wages)
## [1] 406.2234

statistics categorical

library(Hmisc)
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
describe (WI.dfa$Educ.1)
## WI.dfa$Educ.1 
##        n  missing distinct 
##     4511        0        4 
##                                                                   
## Value      no elementary    elementary     high schl       faculty
## Frequency             83           562          3013           853
## Proportion         0.018         0.125         0.668         0.189
describe (WI.dfa$Full.time)
## WI.dfa$Full.time 
##        n  missing distinct 
##     4511        0        2 
##                               
## Value      full time part time
## Frequency       4078       433
## Proportion     0.904     0.096
describe (WI.dfa$Sex_)
## WI.dfa$Sex_ 
##        n  missing distinct     Info     Mean 
##     4511        0        2    0.688    1.356 
##                       
## Value          1     2
## Frequency   2905  1606
## Proportion 0.644 0.356
library(fastDummies)

# Step 1: Create dummy variables for Educ.1
WI.dfa.1 <- WI.dfa %>%
  mutate(Educ.1 = as.factor(Educ.1)) %>%
  dummy_cols(select_columns = "Educ.1", remove_selected_columns = TRUE)

# Step 2: Get the names of the dummy variables for Educ.1
educ_dummy_cols <- grep("^Educ.1_", names(WI.dfa.1), value = TRUE)

# Step 3: Calculate descriptive statistics for each dummy variable
educ_stats_list <- lapply(educ_dummy_cols, function(dummy_col) {
  data.frame(
    Dummy = dummy_col,
    Min = min(WI.dfa.1[[dummy_col]], na.rm = TRUE),
    Max = max(WI.dfa.1[[dummy_col]], na.rm = TRUE),
    Mean = mean(WI.dfa.1[[dummy_col]], na.rm = TRUE),
    SD = sd(WI.dfa.1[[dummy_col]], na.rm = TRUE)
  )
})

# Step 4: Combine results into a single data frame
educ_stats_df <- bind_rows(educ_stats_list)

# View the results
print(educ_stats_df)
##                  Dummy Min Max       Mean        SD
## 1 Educ.1_no elementary   0   1 0.01839947 0.1344058
## 2    Educ.1_elementary   0   1 0.12458435 0.3302836
## 3     Educ.1_high schl   0   1 0.66792286 0.4710107
## 4       Educ.1_faculty   0   1 0.18909333 0.3916261
describe(WI.dfa$Full.time)
## WI.dfa$Full.time 
##        n  missing distinct 
##     4511        0        2 
##                               
## Value      full time part time
## Frequency       4078       433
## Proportion     0.904     0.096
# Step 1: Create dummy variables for Fulltime
WI.dfa1 <- WI.dfa %>%
  mutate(Full.time.1 = as.factor(Full.time)) %>%
  dummy_cols(select_columns = "Full.time.1", remove_selected_columns = TRUE)

# Step 2: Get the names of the dummy variables for Full.time.1
activ_dummy_cols <- grep("^Full.time.1_", names(WI.dfa1), value = TRUE)

# Step 3: Calculate descriptive statistics for each dummy variable
activ_stats_list <- lapply(activ_dummy_cols, function(dummy_col) {
  data.frame(
    Dummy = dummy_col,
    Min = min(WI.dfa1[[dummy_col]], na.rm = TRUE),
    Max = max(WI.dfa1[[dummy_col]], na.rm = TRUE),
    Mean = mean(WI.dfa1[[dummy_col]], na.rm = TRUE),
    SD = sd(WI.dfa1[[dummy_col]], na.rm = TRUE)
  )
})

# Step 4: Combine results into a single data frame
activ_stats_df <- bind_rows(activ_stats_list)

# View the results
print(activ_stats_df)
##                   Dummy Min Max       Mean        SD
## 1 Full.time.1_full time   0   1 0.90401241 0.2946069
## 2 Full.time.1_part time   0   1 0.09598759 0.2946069

Sex_1

describe(WI.dfa$Sex_)
## WI.dfa$Sex_ 
##        n  missing distinct     Info     Mean 
##     4511        0        2    0.688    1.356 
##                       
## Value          1     2
## Frequency   2905  1606
## Proportion 0.644 0.356
# Step 1: Create dummy variables for Sex_1
WI.dfa1 <- WI.dfa %>%
  mutate(Sex_1 = as.factor(Sex_)) %>%
  dummy_cols(select_columns = "Sex_1", remove_selected_columns = TRUE)

# Step 2: Get the names of the dummy variables for Sex_1
sex_dummy_cols <- grep("^Sex_1_", names(WI.dfa1), value = TRUE)

# Step 3: Calculate descriptive statistics for each dummy variable
sex_stats_list <- lapply(sex_dummy_cols, function(dummy_col) {
  data.frame(
    Dummy = dummy_col,
    Min = min(WI.dfa1[[dummy_col]], na.rm = TRUE),
    Max = max(WI.dfa1[[dummy_col]], na.rm = TRUE),
    Mean = mean(WI.dfa1[[dummy_col]], na.rm = TRUE),
    SD = sd(WI.dfa1[[dummy_col]], na.rm = TRUE)
  )
})

# Step 4: Combine results into a single data frame
sex_stats_df <- bind_rows(sex_stats_list)

# View the results
print(sex_stats_df)
##     Dummy Min Max      Mean        SD
## 1 Sex_1_1   0   1 0.6439814 0.4788739
## 2 Sex_1_2   0   1 0.3560186 0.4788739

##next uradi diagnostiku i primijeni mozda weighted model i uporediti. pa onda koji mi bude najbolji raditi winner model

Zakljucak testova je da mi je bolji nonweighed model

FAZA 9: Extracting the coefficients from WINNING model

###WI.3a model

model.coef3a <- summary(WI.3a)$coefficients
model.coef3a # vidi koliko redova su koef.za druge varijable (8redova) i B.Krupa je referentna opstina
##                                 Estimate   Std. Error      t value
## (Intercept)                 4.8820174064 1.385390e-01  35.23929966
## Age                         0.0410644316 4.938568e-03   8.31504816
## as.numeric(Age^2)          -0.0003955788 5.833688e-05  -6.78093837
## factor(Sex_)2              -0.1462233294 1.734289e-02  -8.43131446
## Educ.1elementary            0.1654886912 6.755574e-02   2.44966130
## Educ.1high schl             0.4823290332 6.571441e-02   7.33977534
## Educ.1faculty               0.9292422135 6.791161e-02  13.68311171
## factor(Full.time)part time -0.7410491635 3.014004e-02 -24.58686674
## factor(Munic)B.Petrovac    -0.1828358917 1.880676e-01  -0.97218162
## factor(Munic)Banovici       0.3016533953 1.435173e-01   2.10186063
## factor(Munic)Banja Luka     0.1150192556 1.017768e-01   1.13011324
## factor(Munic)Bihac         -0.0851187048 1.109684e-01  -0.76705331
## factor(Munic)Bijeljina     -0.1147259562 1.011230e-01  -1.13451837
## factor(Munic)Bileca         0.0490915703 1.770603e-01   0.27725901
## factor(Munic)Bratunac       0.3500611443 1.767523e-01   1.98051838
## factor(Munic)Brcko          0.1160503018 1.000743e-01   1.15964185
## factor(Munic)Breza          0.2314714318 1.615308e-01   1.43298605
## factor(Munic)Brod          -0.2568216114 1.401847e-01  -1.83202342
## factor(Munic)Bugojno        0.0392603818 1.139786e-01   0.34445398
## factor(Munic)Busovaca       0.0602734344 1.353958e-01   0.44516461
## factor(Munic)Buzim         -0.6658529584 1.767191e-01  -3.76786037
## factor(Munic)C.Sarajevo     0.3420448207 1.192847e-01   2.86746574
## factor(Munic)Cajnice       -0.1784560884 1.685907e-01  -1.05851665
## factor(Munic)Capljina       0.4760086679 1.399878e-01   3.40035750
## factor(Munic)Cazin         -0.1263838686 1.144643e-01  -1.10413341
## factor(Munic)Celinac       -0.1167661273 1.880239e-01  -0.62101763
## factor(Munic)Citluk         0.2927611936 1.391035e-01   2.10462823
## factor(Munic)D.Vakuf       -0.1137453229 1.258726e-01  -0.90365442
## factor(Munic)Derventa      -0.4716639191 1.293800e-01  -3.64556949
## factor(Munic)Doboj          0.1505261578 1.133413e-01   1.32807822
## factor(Munic)Doboj-Jug     -0.1086578800 1.949907e-01  -0.55724648
## factor(Munic)Drvar          0.0266899413 1.535047e-01   0.17387054
## factor(Munic)Foca - RS     -0.0323988425 1.355439e-01  -0.23902837
## factor(Munic)Fojnica        0.2496832908 1.723464e-01   1.44872951
## factor(Munic)G.Vakuf       -0.1004225275 1.326466e-01  -0.75706827
## factor(Munic)Gacko          0.2474449393 1.404322e-01   1.76202422
## factor(Munic)Glamoc         0.2370568654 1.773276e-01   1.33682969
## factor(Munic)Gorazde        0.2352043382 1.288652e-01   1.82519620
## factor(Munic)Gracanica     -0.1287612023 1.260310e-01  -1.02166316
## factor(Munic)Grad Mostar    0.3323133995 1.032354e-01   3.21898710
## factor(Munic)Gradacac       0.0714432098 1.237006e-01   0.57754940
## factor(Munic)Gradiska      -0.0495593918 1.509196e-01  -0.32838271
## factor(Munic)Grude          0.4015864622 1.354478e-01   2.96487917
## factor(Munic)I.Ilidza      -0.0129577300 1.615006e-01  -0.08023330
## factor(Munic)Ilidza         0.5109311837 1.213849e-01   4.20918174
## factor(Munic)Ilijas         0.1765869018 1.646209e-01   1.07268834
## factor(Munic)Jajce          0.2767950564 1.555703e-01   1.77922800
## factor(Munic)K.Dubica      -0.1379123331 1.722778e-01  -0.80052296
## factor(Munic)Kakanj         0.0780721742 1.279619e-01   0.61012063
## factor(Munic)Kalesija      -0.1258889572 1.436310e-01  -0.87647505
## factor(Munic)Kiseljak       0.2476207118 1.314476e-01   1.88379772
## factor(Munic)Kladanj        0.1331337133 1.767690e-01   0.75315075
## factor(Munic)Kljuc         -0.0100623402 1.646436e-01  -0.06111590
## factor(Munic)Knezevo       -0.0282840147 1.820768e-01  -0.15534115
## factor(Munic)Konjic         0.2337023837 1.161409e-01   2.01223094
## factor(Munic)Kotor Varos    0.1407311704 1.767694e-01   0.79612880
## factor(Munic)Kresevo        0.3692902596 1.470536e-01   2.51126361
## factor(Munic)Kupres         0.2036694262 1.642973e-01   1.23963968
## factor(Munic)Laktasi        0.0235345614 1.241203e-01   0.18961095
## factor(Munic)Livno          0.4060325482 1.331447e-01   3.04955810
## factor(Munic)Lopare        -0.0123681621 1.260554e-01  -0.09811685
## factor(Munic)Lukavac        0.1164707504 1.343077e-01   0.86719366
## factor(Munic)Ljubuski       0.4160130281 1.345058e-01   3.09290034
## factor(Munic)Maglaj         0.0661564022 1.377775e-01   0.48016838
## factor(Munic)Modrica       -0.0635310175 1.194994e-01  -0.53164297
## factor(Munic)Mrkonjic       0.2657356976 1.951913e-01   1.36141191
## factor(Munic)N.G.Sarajevo   0.3454167452 1.022333e-01   3.37871201
## factor(Munic)N.Gorazde     -0.4082614358 1.949913e-01  -2.09374232
## factor(Munic)N.Sarajevo     0.4298509631 1.193930e-01   3.60030410
## factor(Munic)N.Travnik     -0.1673090938 1.125284e-01  -1.48681702
## factor(Munic)Nevesinje     -0.0349373647 1.821560e-01  -0.19179918
## factor(Munic)Novi Grad     -0.0504538219 1.192999e-01  -0.42291603
## factor(Munic)Orasje         0.3446396132 1.377899e-01   2.50119590
## factor(Munic)Pale           0.0730904827 1.452237e-01   0.50329590
## factor(Munic)Posusje        0.4059994225 1.557602e-01   2.60656645
## factor(Munic)Prijedor       0.1439496058 1.119961e-01   1.28530924
## factor(Munic)Prnjavor       0.0196426833 1.242357e-01   0.15810814
## factor(Munic)Prozor         0.2233714878 1.771515e-01   1.26090636
## factor(Munic)Ribnik        -0.0195693403 1.614201e-01  -0.12123238
## factor(Munic)Rogatica       0.1830572232 1.535595e-01   1.19209305
## factor(Munic)Rudo          -0.1641534327 1.614626e-01  -1.01666533
## factor(Munic)S.Brijeg       0.6098130173 1.190223e-01   5.12351911
## factor(Munic)S.G.Sarajevo   0.3636204138 1.217854e-01   2.98574672
## factor(Munic)Samac          0.0210317727 1.123612e-01   0.18718009
## factor(Munic)Sanski Most   -0.0125448276 1.128992e-01  -0.11111529
## factor(Munic)Sokolac       -0.1642980421 1.824111e-01  -0.90070221
## factor(Munic)Srbac          0.0575557836 1.583404e-01   0.36349408
## factor(Munic)Srebrenica     0.3277554536 1.949379e-01   1.68133236
## factor(Munic)Srebrenik      0.1607166511 1.878565e-01   0.85552860
## factor(Munic)Stolac         0.3131976234 1.647674e-01   1.90084684
## factor(Munic)Tesanj         0.0012990188 1.188165e-01   0.01093298
## factor(Munic)Teslic        -0.0376860150 1.287540e-01  -0.29269772
## factor(Munic)Tomislavgrad   0.1667336034 1.820880e-01   0.91567581
## factor(Munic)Travnik        0.3328100303 1.056003e-01   3.15160040
## factor(Munic)Trebinje       0.0339378713 1.274372e-01   0.26631046
## factor(Munic)Tuzla          0.1672624447 1.118753e-01   1.49507904
## factor(Munic)Ugljevik       0.1734186954 1.434156e-01   1.20920414
## factor(Munic)V.Kladusa     -0.2491723445 1.243046e-01  -2.00453001
## factor(Munic)Visegrad      -0.1452941187 1.684744e-01  -0.86241053
## factor(Munic)Visoko         0.1285958545 1.181222e-01   1.08866806
## factor(Munic)Vitez         -0.0681471761 1.131371e-01  -0.60234159
## factor(Munic)Vlasenica      0.1152210905 1.582518e-01   0.72808699
## factor(Munic)Vogosca        0.1411544974 1.435292e-01   0.98345500
## factor(Munic)Zavidovici    -0.0415413631 1.197557e-01  -0.34688423
## factor(Munic)Zenica         0.1012596903 1.038040e-01   0.97548960
## factor(Munic)Zivinice      -0.0541166033 1.208023e-01  -0.44797642
## factor(Munic)Zvornik       -0.3264987028 1.163042e-01  -2.80728324
##                                 Pr(>|t|)
## (Intercept)                7.233233e-240
## Age                         1.209020e-16
## as.numeric(Age^2)           1.352056e-11
## factor(Sex_)2               4.576044e-17
## Educ.1elementary            1.433774e-02
## Educ.1high schl             2.534592e-13
## Educ.1faculty               9.057415e-42
## factor(Full.time)part time 3.397987e-125
## factor(Munic)B.Petrovac     3.310136e-01
## factor(Munic)Banovici       3.562214e-02
## factor(Munic)Banja Luka     2.584901e-01
## factor(Munic)Bihac          4.430909e-01
## factor(Munic)Bijeljina      2.566389e-01
## factor(Munic)Bileca         7.815942e-01
## factor(Munic)Bratunac       4.770744e-02
## factor(Munic)Brcko          2.462575e-01
## factor(Munic)Breza          1.519328e-01
## factor(Munic)Brod           6.701543e-02
## factor(Munic)Bugojno        7.305213e-01
## factor(Munic)Busovaca       6.562227e-01
## factor(Munic)Buzim          1.668056e-04
## factor(Munic)C.Sarajevo     4.157389e-03
## factor(Munic)Cajnice        2.898780e-01
## factor(Munic)Capljina       6.789631e-04
## factor(Munic)Cazin          2.695956e-01
## factor(Munic)Celinac        5.346202e-01
## factor(Munic)Citluk         3.538020e-02
## factor(Munic)D.Vakuf        3.662281e-01
## factor(Munic)Derventa       2.698804e-04
## factor(Munic)Doboj          1.842211e-01
## factor(Munic)Doboj-Jug      5.773874e-01
## factor(Munic)Drvar          8.619752e-01
## factor(Munic)Foca - RS      8.110947e-01
## factor(Munic)Fojnica        1.474843e-01
## factor(Munic)G.Vakuf        4.490495e-01
## factor(Munic)Gacko          7.813457e-02
## factor(Munic)Glamoc         1.813473e-01
## factor(Munic)Gorazde        6.803913e-02
## factor(Munic)Gracanica      3.069965e-01
## factor(Munic)Grad Mostar    1.295777e-03
## factor(Munic)Gradacac       5.635979e-01
## factor(Munic)Gradiska       7.426379e-01
## factor(Munic)Grude          3.044260e-03
## factor(Munic)I.Ilidza       9.360554e-01
## factor(Munic)Ilidza         2.614068e-05
## factor(Munic)Ilijas         2.834698e-01
## factor(Munic)Jajce          7.527134e-02
## factor(Munic)K.Dubica       4.234510e-01
## factor(Munic)Kakanj         5.418134e-01
## factor(Munic)Kalesija       3.808196e-01
## factor(Munic)Kiseljak       5.965817e-02
## factor(Munic)Kladanj        4.513996e-01
## factor(Munic)Kljuc          9.512697e-01
## factor(Munic)Knezevo        8.765595e-01
## factor(Munic)Konjic         4.425637e-02
## factor(Munic)Kotor Varos    4.260001e-01
## factor(Munic)Kresevo        1.206550e-02
## factor(Munic)Kupres         2.151747e-01
## factor(Munic)Laktasi        8.496227e-01
## factor(Munic)Livno          2.305409e-03
## factor(Munic)Lopare         9.218440e-01
## factor(Munic)Lukavac        3.858832e-01
## factor(Munic)Ljubuski       1.994518e-03
## factor(Munic)Maglaj         6.311315e-01
## factor(Munic)Modrica        5.950001e-01
## factor(Munic)Mrkonjic       1.734532e-01
## factor(Munic)N.G.Sarajevo   7.345870e-04
## factor(Munic)N.Gorazde      3.633998e-02
## factor(Munic)N.Sarajevo     3.213461e-04
## factor(Munic)N.Travnik      1.371347e-01
## factor(Munic)Nevesinje      8.479084e-01
## factor(Munic)Novi Grad      6.723772e-01
## factor(Munic)Orasje         1.241350e-02
## factor(Munic)Pale           6.147814e-01
## factor(Munic)Posusje        9.176328e-03
## factor(Munic)Prijedor       1.987518e-01
## factor(Munic)Prnjavor       8.743788e-01
## factor(Munic)Prozor         2.074094e-01
## factor(Munic)Ribnik         9.035125e-01
## factor(Munic)Rogatica       2.332890e-01
## factor(Munic)Rudo           3.093685e-01
## factor(Munic)S.Brijeg       3.127144e-07
## factor(Munic)S.G.Sarajevo   2.844435e-03
## factor(Munic)Samac          8.515281e-01
## factor(Munic)Sanski Most    9.115300e-01
## factor(Munic)Sokolac        3.677959e-01
## factor(Munic)Srbac          7.162533e-01
## factor(Munic)Srebrenica     9.276928e-02
## factor(Munic)Srebrenik      3.923051e-01
## factor(Munic)Stolac         5.738730e-02
## factor(Munic)Tesanj         9.912774e-01
## factor(Munic)Teslic         7.697670e-01
## factor(Munic)Tomislavgrad   3.598871e-01
## factor(Munic)Travnik        1.634680e-03
## factor(Munic)Trebinje       7.900126e-01
## factor(Munic)Tuzla          1.349655e-01
## factor(Munic)Ugljevik       2.266493e-01
## factor(Munic)V.Kladusa      4.507442e-02
## factor(Munic)Visegrad       3.885086e-01
## factor(Munic)Visoko         2.763599e-01
## factor(Munic)Vitez          5.469778e-01
## factor(Munic)Vlasenica      4.665990e-01
## factor(Munic)Vogosca        3.254376e-01
## factor(Munic)Zavidovici     7.286949e-01
## factor(Munic)Zenica         3.293710e-01
## factor(Munic)Zivinice       6.541922e-01
## factor(Munic)Zvornik        5.018104e-03
model.coef3a[,c("Estimate","Pr(>|t|)")]
##                                 Estimate      Pr(>|t|)
## (Intercept)                 4.8820174064 7.233233e-240
## Age                         0.0410644316  1.209020e-16
## as.numeric(Age^2)          -0.0003955788  1.352056e-11
## factor(Sex_)2              -0.1462233294  4.576044e-17
## Educ.1elementary            0.1654886912  1.433774e-02
## Educ.1high schl             0.4823290332  2.534592e-13
## Educ.1faculty               0.9292422135  9.057415e-42
## factor(Full.time)part time -0.7410491635 3.397987e-125
## factor(Munic)B.Petrovac    -0.1828358917  3.310136e-01
## factor(Munic)Banovici       0.3016533953  3.562214e-02
## factor(Munic)Banja Luka     0.1150192556  2.584901e-01
## factor(Munic)Bihac         -0.0851187048  4.430909e-01
## factor(Munic)Bijeljina     -0.1147259562  2.566389e-01
## factor(Munic)Bileca         0.0490915703  7.815942e-01
## factor(Munic)Bratunac       0.3500611443  4.770744e-02
## factor(Munic)Brcko          0.1160503018  2.462575e-01
## factor(Munic)Breza          0.2314714318  1.519328e-01
## factor(Munic)Brod          -0.2568216114  6.701543e-02
## factor(Munic)Bugojno        0.0392603818  7.305213e-01
## factor(Munic)Busovaca       0.0602734344  6.562227e-01
## factor(Munic)Buzim         -0.6658529584  1.668056e-04
## factor(Munic)C.Sarajevo     0.3420448207  4.157389e-03
## factor(Munic)Cajnice       -0.1784560884  2.898780e-01
## factor(Munic)Capljina       0.4760086679  6.789631e-04
## factor(Munic)Cazin         -0.1263838686  2.695956e-01
## factor(Munic)Celinac       -0.1167661273  5.346202e-01
## factor(Munic)Citluk         0.2927611936  3.538020e-02
## factor(Munic)D.Vakuf       -0.1137453229  3.662281e-01
## factor(Munic)Derventa      -0.4716639191  2.698804e-04
## factor(Munic)Doboj          0.1505261578  1.842211e-01
## factor(Munic)Doboj-Jug     -0.1086578800  5.773874e-01
## factor(Munic)Drvar          0.0266899413  8.619752e-01
## factor(Munic)Foca - RS     -0.0323988425  8.110947e-01
## factor(Munic)Fojnica        0.2496832908  1.474843e-01
## factor(Munic)G.Vakuf       -0.1004225275  4.490495e-01
## factor(Munic)Gacko          0.2474449393  7.813457e-02
## factor(Munic)Glamoc         0.2370568654  1.813473e-01
## factor(Munic)Gorazde        0.2352043382  6.803913e-02
## factor(Munic)Gracanica     -0.1287612023  3.069965e-01
## factor(Munic)Grad Mostar    0.3323133995  1.295777e-03
## factor(Munic)Gradacac       0.0714432098  5.635979e-01
## factor(Munic)Gradiska      -0.0495593918  7.426379e-01
## factor(Munic)Grude          0.4015864622  3.044260e-03
## factor(Munic)I.Ilidza      -0.0129577300  9.360554e-01
## factor(Munic)Ilidza         0.5109311837  2.614068e-05
## factor(Munic)Ilijas         0.1765869018  2.834698e-01
## factor(Munic)Jajce          0.2767950564  7.527134e-02
## factor(Munic)K.Dubica      -0.1379123331  4.234510e-01
## factor(Munic)Kakanj         0.0780721742  5.418134e-01
## factor(Munic)Kalesija      -0.1258889572  3.808196e-01
## factor(Munic)Kiseljak       0.2476207118  5.965817e-02
## factor(Munic)Kladanj        0.1331337133  4.513996e-01
## factor(Munic)Kljuc         -0.0100623402  9.512697e-01
## factor(Munic)Knezevo       -0.0282840147  8.765595e-01
## factor(Munic)Konjic         0.2337023837  4.425637e-02
## factor(Munic)Kotor Varos    0.1407311704  4.260001e-01
## factor(Munic)Kresevo        0.3692902596  1.206550e-02
## factor(Munic)Kupres         0.2036694262  2.151747e-01
## factor(Munic)Laktasi        0.0235345614  8.496227e-01
## factor(Munic)Livno          0.4060325482  2.305409e-03
## factor(Munic)Lopare        -0.0123681621  9.218440e-01
## factor(Munic)Lukavac        0.1164707504  3.858832e-01
## factor(Munic)Ljubuski       0.4160130281  1.994518e-03
## factor(Munic)Maglaj         0.0661564022  6.311315e-01
## factor(Munic)Modrica       -0.0635310175  5.950001e-01
## factor(Munic)Mrkonjic       0.2657356976  1.734532e-01
## factor(Munic)N.G.Sarajevo   0.3454167452  7.345870e-04
## factor(Munic)N.Gorazde     -0.4082614358  3.633998e-02
## factor(Munic)N.Sarajevo     0.4298509631  3.213461e-04
## factor(Munic)N.Travnik     -0.1673090938  1.371347e-01
## factor(Munic)Nevesinje     -0.0349373647  8.479084e-01
## factor(Munic)Novi Grad     -0.0504538219  6.723772e-01
## factor(Munic)Orasje         0.3446396132  1.241350e-02
## factor(Munic)Pale           0.0730904827  6.147814e-01
## factor(Munic)Posusje        0.4059994225  9.176328e-03
## factor(Munic)Prijedor       0.1439496058  1.987518e-01
## factor(Munic)Prnjavor       0.0196426833  8.743788e-01
## factor(Munic)Prozor         0.2233714878  2.074094e-01
## factor(Munic)Ribnik        -0.0195693403  9.035125e-01
## factor(Munic)Rogatica       0.1830572232  2.332890e-01
## factor(Munic)Rudo          -0.1641534327  3.093685e-01
## factor(Munic)S.Brijeg       0.6098130173  3.127144e-07
## factor(Munic)S.G.Sarajevo   0.3636204138  2.844435e-03
## factor(Munic)Samac          0.0210317727  8.515281e-01
## factor(Munic)Sanski Most   -0.0125448276  9.115300e-01
## factor(Munic)Sokolac       -0.1642980421  3.677959e-01
## factor(Munic)Srbac          0.0575557836  7.162533e-01
## factor(Munic)Srebrenica     0.3277554536  9.276928e-02
## factor(Munic)Srebrenik      0.1607166511  3.923051e-01
## factor(Munic)Stolac         0.3131976234  5.738730e-02
## factor(Munic)Tesanj         0.0012990188  9.912774e-01
## factor(Munic)Teslic        -0.0376860150  7.697670e-01
## factor(Munic)Tomislavgrad   0.1667336034  3.598871e-01
## factor(Munic)Travnik        0.3328100303  1.634680e-03
## factor(Munic)Trebinje       0.0339378713  7.900126e-01
## factor(Munic)Tuzla          0.1672624447  1.349655e-01
## factor(Munic)Ugljevik       0.1734186954  2.266493e-01
## factor(Munic)V.Kladusa     -0.2491723445  4.507442e-02
## factor(Munic)Visegrad      -0.1452941187  3.885086e-01
## factor(Munic)Visoko         0.1285958545  2.763599e-01
## factor(Munic)Vitez         -0.0681471761  5.469778e-01
## factor(Munic)Vlasenica      0.1152210905  4.665990e-01
## factor(Munic)Vogosca        0.1411544974  3.254376e-01
## factor(Munic)Zavidovici    -0.0415413631  7.286949e-01
## factor(Munic)Zenica         0.1012596903  3.293710e-01
## factor(Munic)Zivinice      -0.0541166033  6.541922e-01
## factor(Munic)Zvornik       -0.3264987028  5.018104e-03
model.coef3a <- model.coef3a
model.coef3a <- as.data.frame.array(model.coef3a[-c(1:8),]) # da bude dataframe a ne matrix i da mi brise prvih 8 redova koji su drugi koeficijenti
Munic <- rownames(model.coef3a)
model.coef3a$Munic <- Munic

za 3a

dim(model.coef3a) #da vidim koliko redova
## [1] 99  5
rownames(model.coef3a) <- 1:99 #nedostaje B.Krupa koje je 0, B.Grahovo nije u modelu
head(model.coef3a)
##      Estimate Std. Error    t value   Pr(>|t|)                   Munic
## 1 -0.18283589  0.1880676 -0.9721816 0.33101360 factor(Munic)B.Petrovac
## 2  0.30165340  0.1435173  2.1018606 0.03562214   factor(Munic)Banovici
## 3  0.11501926  0.1017768  1.1301132 0.25849005 factor(Munic)Banja Luka
## 4 -0.08511870  0.1109684 -0.7670533 0.44309094      factor(Munic)Bihac
## 5 -0.11472596  0.1011230 -1.1345184 0.25663892  factor(Munic)Bijeljina
## 6  0.04909157  0.1770603  0.2772590 0.78159424     factor(Munic)Bileca

modela

Munic1 <- sapply(strsplit(Munic, split=')', fixed=TRUE), function(x) (x[2]))
Munic1
##  [1] "B.Petrovac"   "Banovici"     "Banja Luka"   "Bihac"        "Bijeljina"   
##  [6] "Bileca"       "Bratunac"     "Brcko"        "Breza"        "Brod"        
## [11] "Bugojno"      "Busovaca"     "Buzim"        "C.Sarajevo"   "Cajnice"     
## [16] "Capljina"     "Cazin"        "Celinac"      "Citluk"       "D.Vakuf"     
## [21] "Derventa"     "Doboj"        "Doboj-Jug"    "Drvar"        "Foca - RS"   
## [26] "Fojnica"      "G.Vakuf"      "Gacko"        "Glamoc"       "Gorazde"     
## [31] "Gracanica"    "Grad Mostar"  "Gradacac"     "Gradiska"     "Grude"       
## [36] "I.Ilidza"     "Ilidza"       "Ilijas"       "Jajce"        "K.Dubica"    
## [41] "Kakanj"       "Kalesija"     "Kiseljak"     "Kladanj"      "Kljuc"       
## [46] "Knezevo"      "Konjic"       "Kotor Varos"  "Kresevo"      "Kupres"      
## [51] "Laktasi"      "Livno"        "Lopare"       "Lukavac"      "Ljubuski"    
## [56] "Maglaj"       "Modrica"      "Mrkonjic"     "N.G.Sarajevo" "N.Gorazde"   
## [61] "N.Sarajevo"   "N.Travnik"    "Nevesinje"    "Novi Grad"    "Orasje"      
## [66] "Pale"         "Posusje"      "Prijedor"     "Prnjavor"     "Prozor"      
## [71] "Ribnik"       "Rogatica"     "Rudo"         "S.Brijeg"     "S.G.Sarajevo"
## [76] "Samac"        "Sanski Most"  "Sokolac"      "Srbac"        "Srebrenica"  
## [81] "Srebrenik"    "Stolac"       "Tesanj"       "Teslic"       "Tomislavgrad"
## [86] "Travnik"      "Trebinje"     "Tuzla"        "Ugljevik"     "V.Kladusa"   
## [91] "Visegrad"     "Visoko"       "Vitez"        "Vlasenica"    "Vogosca"     
## [96] "Zavidovici"   "Zenica"       "Zivinice"     "Zvornik"
model.coef3a$Munic1 <- Munic1

add B.Krupa to dataframe 3a

model.coef3a[nrow(model.coef3a) + 1,] = c(0, NA, NA, NA,"B.Krupa","B.Krupa" )
model.coef3a$Estimate <- as.numeric(model.coef3a$Estimate)
top10.m3a <- model.coef3a  %>%
    dplyr::select(Estimate, Munic1) %>%
    arrange (desc(Estimate))%>%
    head(10) #top ten municipalities
top10.m3a
##     Estimate       Munic1
## 1  0.6098130     S.Brijeg
## 2  0.5109312       Ilidza
## 3  0.4760087     Capljina
## 4  0.4298510   N.Sarajevo
## 5  0.4160130     Ljubuski
## 6  0.4060325        Livno
## 7  0.4059994      Posusje
## 8  0.4015865        Grude
## 9  0.3692903      Kresevo
## 10 0.3636204 S.G.Sarajevo
bot10.m.empl <- model.coef3a  %>%
    dplyr::select(Estimate, Munic1) %>%
    arrange (Estimate)%>%
    head(10) #bottom ten municipalities
bot10.m.empl
##      Estimate     Munic1
## 1  -0.6658530      Buzim
## 2  -0.4716639   Derventa
## 3  -0.4082614  N.Gorazde
## 4  -0.3264987    Zvornik
## 5  -0.2568216       Brod
## 6  -0.2491723  V.Kladusa
## 7  -0.1828359 B.Petrovac
## 8  -0.1784561    Cajnice
## 9  -0.1673091  N.Travnik
## 10 -0.1642980    Sokolac

Zakljucak za doktorat ovjde da je to sve moguce samo sto model posmatra gdje ljudi zive i moguce je da neko iz recimo Posusja radi u S.Brijeg, ali treba imati na umu to nije bas ispravno. Potrebni su podaci plata prema mjestu gdje neko radi a ne gdje zivi.

The log-linear wage model is:

\[ \log(w_i) = X_i^\top \beta + \mu_{k(i)} + \varepsilon_i \]

where: - \(w_i\) is the wage for individual \(i\), - \(X_i\) is a vector of explanatory variables, - \(\beta\) is the vector of coefficients for the explanatory variables, - \(\mu_{k(i)}\) is the fixed effect for the municipality \(k\) where individual \(i\) resides, - \(\varepsilon_i\) is the error term.

To calculate the final coefficient for wages at the municipal level, you exponentiate the log estimates and multiply them by the share of employment in each municipality:

\[ w_k = \left( \exp(X_i^\top \beta + \mu_{k}) \right) \cdot s_k \]

where: - \(w_k\) is the adjusted wage estimate for municipality \(k\), - \(s_k\) is the share of employment in municipality \(k\).

If \(s_k\) represents the employment share for all individuals in \(k\), and we want to adjust the wage to account for these shares, so we used this formula to combine the effects.