library(tidyverse)
## Warning: package 'tidyr' was built under R version 4.3.3
## Warning: package 'readr' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(bruceR)
## 
## bruceR (v2023.9)
## Broadly Useful Convenient and Efficient R functions
## 
## Packages also loaded:
## ✔ data.table ✔ emmeans
## ✔ dplyr      ✔ lmerTest
## ✔ tidyr      ✔ effectsize
## ✔ stringr    ✔ performance
## ✔ ggplot2    ✔ interactions
## 
## Main functions of `bruceR`:
## cc()             Describe()  TTEST()
## add()            Freq()      MANOVA()
## .mean()          Corr()      EMMEANS()
## set.wd()         Alpha()     PROCESS()
## import()         EFA()       model_summary()
## print_table()    CFA()       lavaan_summary()
## 
## For full functionality, please install all dependencies:
## install.packages("bruceR", dep=TRUE)
## 
## Online documentation:
## https://psychbruce.github.io/bruceR
## 
## To use this package in publications, please cite:
## Bao, H.-W.-S. (2023). bruceR: Broadly useful convenient and efficient R functions (Version 2023.9) [Computer software]. https://CRAN.R-project.org/package=bruceR
## 
## 
## NEWS: A new version of bruceR (2024.6) is available (2024-06-13)!
## 
## ***** Please update *****
## install.packages("bruceR", dep=TRUE)
## 
## 
## These packages are dependencies of `bruceR` but not installed:
## - pacman, ggtext, see, vars, phia, GGally, GPArotation
## 
## ***** Install all dependencies *****
## install.packages("bruceR", dep=TRUE)
## 
## 
## Attaching package: 'bruceR'
## 
## The following object is masked _by_ 'package:data.table':
## 
##     %notin%
#清空环境变量
rm(list = ls())
set.wd()
## ✔ Set working directory to "C:/Users/psyuser/Desktop/CP conference"
source('summarySE.R')

library(afex)
## Warning: package 'afex' was built under R version 4.3.3
## ************
## Welcome to afex. For support visit: http://afex.singmann.science/
## - Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
## - Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
## - 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
## - Get and set global package options with: afex_options()
## - Set sum-to-zero contrasts globally: set_sum_contrasts()
## - For example analyses see: browseVignettes("afex")
## ************
## 
## Attaching package: 'afex'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
library(emmeans) # for post hoc test
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 4.3.3
library(cowplot)
## Warning: package 'cowplot' was built under R version 4.3.3
## 
## Attaching package: 'cowplot'
## 
## The following object is masked from 'package:ggthemes':
## 
##     theme_map
## 
## The following object is masked from 'package:lubridate':
## 
##     stamp
library(ggpubr)
## Registered S3 methods overwritten by 'broom':
##   method            from  
##   tidy.glht         jtools
##   tidy.summary.glht jtools
## 
## Attaching package: 'ggpubr'
## 
## The following object is masked from 'package:cowplot':
## 
##     get_legend
library(rstatix)
## 
## Attaching package: 'rstatix'
## 
## The following objects are masked from 'package:effectsize':
## 
##     cohens_d, eta_squared
## 
## The following object is masked from 'package:stats':
## 
##     filter
library(effsize)
library(data.table)  

my_data <- read_csv('edfData_DotFace_Allsubject_in_trial_fix.csv') %>% filter(subnum != 'HC029_')
## Rows: 136014 Columns: 29
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (6): subnum, sub_type, expression, L_stim, R_stim, emo_stim
## dbl (23): index, startT, endT, duration, avgX, avgY, avgPupil, AOI, AOI_gaze...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
my_data <- my_data %>% mutate(trial_type=case_when(
  trial_type == "1" ~ "guided_emo",
  trial_type == "2" ~ "guided_neu",
  trial_type == "3" ~ "centered",
  TRUE ~ NA_character_)) %>% 
  mutate(dwell_emo=case_when( 
    dwell_emo == "1" ~ "guided_emo",
    dwell_emo == "2" ~ "guided_neu",
    dwell_emo == "31" ~ "centered_emo",
    dwell_emo == "32" ~ "centered_neu")) %>% 
  filter(duration >= 60) %>% 
  group_by(subnum,Ntrial) %>% 
  mutate(continue_gaze=rleid(AOI_emo)) %>% 
  ungroup()
  

# 看看有效引导的百分比
my_data_1ratio <- my_data %>% group_by(subnum, sub_type, trial_type) %>%  
  select(c(subnum, sub_type, trial_type, guided_trial)) %>% 
  replace_na(list(guided_trial = 0)) %>% 
  summarise(across(everything(), ~mean(. == 1))) %>% ungroup() 
## `summarise()` has grouped output by 'subnum', 'sub_type'. You can override
## using the `.groups` argument.
my_data <- my_data %>% filter(subnum != 'MD034_') # filtered because the guided trial rate is lower than 70%
# 首注视偏好
# 每个被试每种表情的注视偏好比例
data4 <- my_data %>% 
  filter(trial_type == 'centered', AOI_emo==1|AOI_emo==2) %>%
  group_by(subnum, Ntrial, sub_type, expression, AOI_emo) %>% 
  mutate(order=1:n()) %>% 
  ungroup() %>% 
  filter(order==1) %>% 
  group_by(subnum, Ntrial, sub_type, expression) %>% 
  mutate(order=1:n(),AOI_emo=factor(AOI_emo,levels=c(1,2),
                                    labels=c('emo','neu'))) %>% 
  ungroup() %>% 
  filter(order==1) %>% 
  group_by(subnum, sub_type, expression, AOI_emo) %>% 
  dplyr::summarize(num=n()) %>% 
  ungroup() %>% 
  spread(key = AOI_emo, value = num) %>% 
  mutate(tot=emo+neu,rate=emo/tot)
## `summarise()` has grouped output by 'subnum', 'sub_type', 'expression'. You can
## override using the `.groups` argument.
# Test if the first gaze rate within each bs and ws factor is significantly higher than 0.5
t_test_results <- data4 %>%
  group_by(sub_type, expression) %>%
  summarise(t_test = list(t.test(rate, mu = 0.5, alternative = "greater"))) %>%
  mutate(p_value = map_dbl(t_test, "p.value"),
         statistic = map_dbl(t_test, "statistic"),
         conf_int = map(t_test, "conf.int"))
## `summarise()` has grouped output by 'sub_type'. You can override using the
## `.groups` argument.
# Apply Bonferroni correction
num_tests <- nrow(t_test_results)
t_test_results <- t_test_results %>%
  mutate(p_value_bonferroni = p.adjust(p_value, method = "bonferroni", n = num_tests))
  
# Print the t-test results
print(t_test_results)
## # A tibble: 6 × 7
## # Groups:   sub_type [2]
##   sub_type expression t_test   p_value statistic conf_int  p_value_bonferroni
##   <chr>    <chr>      <list>     <dbl>     <dbl> <list>                 <dbl>
## 1 HC       F          <htest> 3.07e- 8     6.35  <dbl [2]>           1.84e- 7
## 2 HC       H          <htest> 3.33e- 1     0.435 <dbl [2]>           1   e+ 0
## 3 HC       S          <htest> 4.83e- 3     2.69  <dbl [2]>           2.90e- 2
## 4 MDD      F          <htest> 8.42e-11     7.41  <dbl [2]>           5.05e-10
## 5 MDD      H          <htest> 1.36e- 3     3.10  <dbl [2]>           8.14e- 3
## 6 MDD      S          <htest> 4.31e- 8     5.94  <dbl [2]>           2.58e- 7
# Perform ANOVA for first fixation preference
anova_first_prefer <- aov_ez(
  data = data4,
  id = 'subnum',
  dv = 'rate',
  between = 'sub_type',
  within = 'expression',
  observed = 'sub_type'
)
## Converting to factor: sub_type
## Contrasts set to contr.sum for the following variables: sub_type
# Summarize the ANOVA results
summary(anova_first_prefer)
## Warning in summary.Anova.mlm(object$Anova, multivariate = FALSE): HF eps > 1
## treated as 1
## 
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
## 
##                      Sum Sq num Df Error SS den Df   F value    Pr(>F)    
## (Intercept)         116.326      1   2.0477    124 7044.1570 < 2.2e-16 ***
## sub_type              0.029      1   2.0477    124    1.7853    0.1840    
## expression            0.365      2   3.5539    248   12.7495 5.364e-06 ***
## sub_type:expression   0.032      2   3.5539    248    1.1222    0.3272    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Mauchly Tests for Sphericity
## 
##                     Test statistic p-value
## expression                 0.99883 0.93029
## sub_type:expression        0.99883 0.93029
## 
## 
## Greenhouse-Geisser and Huynh-Feldt Corrections
##  for Departure from Sphericity
## 
##                      GG eps Pr(>F[GG])    
## expression          0.99883  5.421e-06 ***
## sub_type:expression 0.99883     0.3272    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                       HF eps   Pr(>F[HF])
## expression          1.015172 5.364301e-06
## sub_type:expression 1.015172 3.271978e-01
# Perform post hoc test on 'expression' variable
emmeans_result <- emmeans(anova_first_prefer, pairwise ~ expression, adjust = "bonferroni")

# Print the post hoc test results
print(emmeans_result)
## $emmeans
##  expression emmean     SE  df lower.CL upper.CL
##  F           0.604 0.0108 124    0.583    0.626
##  H           0.527 0.0114 124    0.504    0.549
##  S           0.564 0.0112 124    0.542    0.587
## 
## Results are averaged over the levels of: sub_type 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate     SE  df t.ratio p.value
##  F - H      0.0776 0.0151 124   5.138  <.0001
##  F - S      0.0397 0.0155 124   2.566  0.0344
##  H - S     -0.0379 0.0155 124  -2.441  0.0482
## 
## Results are averaged over the levels of: sub_type 
## P value adjustment: bonferroni method for 3 tests
# 引导中间 潜伏期
outlier.IQR <- function(x, multiple = 1.5) {
  q <- quantile(x, na.rm = TRUE) #四分位间距3倍间距以外的认为是离群值
  IQR <- q[4] - q[2]
  x1 <- q[2] - multiple * IQR 
  x2 <- q[4] + multiple * IQR
  return(c(x1, x2))
}

data3 <- my_data %>% 
  filter(trial_type == 'centered', AOI_emo==1|AOI_emo==2) %>%
  group_by(subnum, Ntrial, sub_type, expression, AOI_emo) %>% 
  mutate(order=1:n()) %>% 
  ungroup() %>% 
  filter(order==1) %>% 
  mutate(latency=startT-Tstart,AOI_emo=factor(AOI_emo)) %>% 
  filter(latency<=2500, latency>=120)  # need papers to support

sumrepdat3E_sub <- summarySE(data3, measurevar = "latency", 
                             groupvars=c('subnum',"sub_type", "trial_type","expression",'AOI_emo')) %>% 
  mutate(IQR_L=outlier.IQR(latency_mean)[1], IQR_H=outlier.IQR(latency_mean)[2]) %>% 
  mutate(valid1=if_else(latency_mean>=IQR_L & latency_mean<=IQR_H, 1, 0)) %>% 
  filter(valid1==1) # need to be tested
## Warning in qt(conf.interval/2 + 0.5, datac$N - 1): NaNs produced
# Perform ANOVA for first fixation latency
anova_fix_latency <- aov_ez(
  data = sumrepdat3E_sub,
  id = 'subnum',
  dv = 'latency_mean',
  between = 'sub_type',
  within = 'expression',
  observed = 'sub_type'
)
## Converting to factor: sub_type
## Warning: More than one observation per design cell, aggregating data using `fun_aggregate = mean`.
## To turn off this warning, pass `fun_aggregate = mean` explicitly.
## Warning: Missing values for 2 ID(s), which were removed before analysis:
## MD029_, MD039_
## Below the first few rows (in wide format) of the removed cases with missing data.
##      subnum sub_type       F         H      S
## # 60 MD029_      MDD 886.625 1038.0000    NaN
## # 64 MD039_      MDD     NaN  925.1667 836.75
## Contrasts set to contr.sum for the following variables: sub_type
# Summarize the ANOVA results
summary(anova_fix_latency)
## 
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
## 
##                        Sum Sq num Df Error SS den Df   F value  Pr(>F)    
## (Intercept)         174436262      1  5745442    122 3704.0189 < 2e-16 ***
## sub_type               256021      1  5745442    122    5.4364 0.02136 *  
## expression              19191      2  1582109    244    1.4799 0.22970    
## sub_type:expression      2598      2  1582109    244    0.2003 0.81859    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Mauchly Tests for Sphericity
## 
##                     Test statistic p-value
## expression                 0.96997 0.15812
## sub_type:expression        0.96997 0.15812
## 
## 
## Greenhouse-Geisser and Huynh-Feldt Corrections
##  for Departure from Sphericity
## 
##                      GG eps Pr(>F[GG])
## expression          0.97085     0.2301
## sub_type:expression 0.97085     0.8122
## 
##                        HF eps Pr(>F[HF])
## expression          0.9863076  0.2298797
## sub_type:expression 0.9863076  0.8156391
# Perform post hoc test on 'sub_type' variable
emmeans_latency_result <- emmeans(anova_fix_latency, pairwise ~ sub_type, adjust = "bonferroni")

# Print the post hoc test results
print(emmeans_latency_result)
## $emmeans
##  sub_type emmean   SE  df lower.CL upper.CL
##  HC          669 17.5 122      634      704
##  MDD         722 14.7 122      693      751
## 
## Results are averaged over the levels of: expression 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate   SE  df t.ratio p.value
##  HC - MDD    -53.3 22.9 122  -2.332  0.0214
## 
## Results are averaged over the levels of: expression
# 引导条件下首滞留
data2 <- my_data %>% 
  filter(trial_type != 'centered', continue_gaze==1) %>%
  mutate(FIX_latency=endT-Tstart) %>% 
  group_by(subnum, Ntrial, sub_type, trial_type, expression) %>%
  summarise(latency=max(FIX_latency)) %>% 
  ungroup() %>% 
  filter(latency>=120) %>%  # need papers to support
  mutate(latency=if_else(latency>=2500, 2500, latency))
## `summarise()` has grouped output by 'subnum', 'Ntrial', 'sub_type',
## 'trial_type'. You can override using the `.groups` argument.
sumrepdat2E_sub <- summarySE(data2, measurevar = "latency", 
                             groupvars=c('subnum',"sub_type", "trial_type", "expression")) %>% 
  mutate(IQR_L=outlier.IQR(latency_mean)[1], IQR_H=outlier.IQR(latency_mean)[2]) %>% 
  mutate(valid1=if_else(latency_mean>=IQR_L & latency_mean<=IQR_H, 1, 0)) %>% 
  filter(valid1==1) # need to be tested

# Perform ANOVA for first fixation latency
anova_dwell <- aov_ez(
  data = sumrepdat2E_sub,
  id = 'subnum',
  dv = 'latency_mean',
  between = 'sub_type',
  within = 'expression',
  observed = 'sub_type'
)
## Converting to factor: sub_type
## Warning: More than one observation per design cell, aggregating data using `fun_aggregate = mean`.
## To turn off this warning, pass `fun_aggregate = mean` explicitly.
## Warning: Missing values for 3 ID(s), which were removed before analysis:
## HC081_, HC107_, MD070_
## Below the first few rows (in wide format) of the removed cases with missing data.
##      subnum sub_type        F        H         S
## # 29 HC081_       HC 891.8571      NaN  739.5938
## # 42 HC107_       HC      NaN      NaN 1046.0625
## # 86 MD070_      MDD      NaN 949.0625  867.0000
## Contrasts set to contr.sum for the following variables: sub_type
# Summarize the ANOVA results
summary(anova_dwell)
## 
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
## 
##                       Sum Sq num Df Error SS den Df   F value    Pr(>F)    
## (Intercept)         83422827      1  9311717    118 1057.1512 < 2.2e-16 ***
## sub_type              152687      1  9311717    118    1.9349    0.1668    
## expression            110830      2  1352069    236    9.6725 9.174e-05 ***
## sub_type:expression      622      2  1352069    236    0.0543    0.9471    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Mauchly Tests for Sphericity
## 
##                     Test statistic   p-value
## expression                 0.89703 0.0017344
## sub_type:expression        0.89703 0.0017344
## 
## 
## Greenhouse-Geisser and Huynh-Feldt Corrections
##  for Departure from Sphericity
## 
##                      GG eps Pr(>F[GG])    
## expression          0.90664  0.0001674 ***
## sub_type:expression 0.90664  0.9339428    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                        HF eps   Pr(>F[HF])
## expression          0.9199872 0.0001535728
## sub_type:expression 0.9199872 0.9360288921
# Perform post hoc test on 'expression' variable
emmeans_result <- emmeans(anova_dwell, pairwise ~ expression, adjust = "bonferroni")

# Print the post hoc test results
print(emmeans_result)
## $emmeans
##  expression emmean   SE  df lower.CL upper.CL
##  F             510 16.8 118      477      544
##  H             492 16.3 118      460      524
##  S             467 15.1 118      437      497
## 
## Results are averaged over the levels of: sub_type 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate    SE  df t.ratio p.value
##  F - H        18.4 11.42 118   1.613  0.3284
##  F - S        43.5  8.97 118   4.855  <.0001
##  H - S        25.1  9.25 118   2.717  0.0228
## 
## Results are averaged over the levels of: sub_type 
## P value adjustment: bonferroni method for 3 tests