FP-Growth adalah algoritma pencarian frequent itemsets yang didapat dari FP-tree. Algoritma FP-Growth merupakan pengembangan dari algoritma Apriori. Sehingga kekurangan dari algoritma Apriori diperbaiki di algoritma FP-Growth. Algoritma ini menenfukan frequent itemset yang berakhkan suffix tertentu dengan menggunakan metode devide and conquer untuk memecah problem menjadi subproblem yang lebih kecil. Jadi dapat disimpulkan bahwa FP-Growth adalah salah satu algoritma yang digunakan untuk mencari himpunan data yang sering muncul dari sekumpulan data, dengan menggunakan cara pembangktan stuktur data Tree.
Mahasiswa dapat menganalisis, menginterpretasikan data dan informasi serta mengambil keputusan yang tepat berdasarkan pendekatan analisis asosiasi (CPMK1, CPMK2, KUE, KKB). - Analisis afinitas - Algoritma Apriori di R Studio - Pertumbuhan FP di R Studio
Analisis afinitas adalah studi tentang atribut atau karakteristik yang “berjalan bersama”. Metode untuk analisis afinitas, juga dikenal sebagai analisis keranjang pasar, berusaha mengungkap asosiasi di antara atribut-atribut ini; yaitu, ia berusaha mengungkap aturan untuk mengukur hubungan antara dua atau lebih atribut. Aturan asosiasi mengambil bentuk “Jika anteseden, maka konsekuensinya”, bersama dengan ukuran dukungan dan kepercayaan yang terkait dengan aturan tersebut.
Apriori() menghasilkan seperangkat aturan yang paling relevan dari data transaksi tertentu. Ini juga menunjukkan dukungan, kepercayaan diri, dan pencabutan aturan tersebut. Ketiga ukuran ini dapat digunakan untuk memutuskan kekuatan relatif aturan. Jadi apa arti istilah-istilah ini?
Support \(=\frac{\text { Number of transactions with both } A \text { and } B}{\text { Total number of transactions }}=P(A \cap B)\)
Confidence \(=\frac{\text { Number of transactions with both A and } B}{\text { Total number of transactions with } A}=\frac{P(A \cap B)}{P(A)}\)
ExpectedCon fidence \(=\frac{\text { Number of transactions with } B}{\text { Total number of transactions }}=P(B)\)
Lift \(=\frac{\text { Confidence }}{\text { Expected Confidence }}=\frac{P(A \cap B)}{P(A) \cdot P(B)}\)
library(Matrix)
library(arules)
## Warning: package 'arules' was built under R version 4.4.2
##
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
## abbreviate, write
library(arulesViz)
## Warning: package 'arulesViz' was built under R version 4.4.2
library(grid)
data("Groceries")
class(Groceries)
## [1] "transactions"
## attr(,"package")
## [1] "arules"
inspect(head(Groceries, 3))
## items
## [1] {citrus fruit,
## semi-finished bread,
## margarine,
## ready soups}
## [2] {tropical fruit,
## yogurt,
## coffee}
## [3] {whole milk}
frequentItems <- eclat (Groceries, parameter = list(supp = 0.07, maxlen = 15)) #Menghitung dukungan untuk item yang sering
## Eclat
##
## parameter specification:
## tidLists support minlen maxlen target ext
## FALSE 0.07 1 15 frequent itemsets TRUE
##
## algorithmic control:
## sparse sort verbose
## 7 -2 TRUE
##
## Absolute minimum support count: 688
##
## create itemset ...
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.01s].
## sorting and recoding items ... [18 item(s)] done [0.00s].
## creating sparse bit matrix ... [18 row(s), 9835 column(s)] done [0.00s].
## writing ... [19 set(s)] done [0.00s].
## Creating S4 object ... done [0.00s].
inspect(frequentItems)
## items support count
## [1] {other vegetables, whole milk} 0.07483477 736
## [2] {whole milk} 0.25551601 2513
## [3] {other vegetables} 0.19349263 1903
## [4] {rolls/buns} 0.18393493 1809
## [5] {yogurt} 0.13950178 1372
## [6] {soda} 0.17437722 1715
## [7] {root vegetables} 0.10899847 1072
## [8] {tropical fruit} 0.10493137 1032
## [9] {bottled water} 0.11052364 1087
## [10] {sausage} 0.09395018 924
## [11] {shopping bags} 0.09852567 969
## [12] {citrus fruit} 0.08276563 814
## [13] {pastry} 0.08896797 875
## [14] {pip fruit} 0.07564820 744
## [15] {whipped/sour cream} 0.07168277 705
## [16] {fruit/vegetable juice} 0.07229283 711
## [17] {newspapers} 0.07981698 785
## [18] {bottled beer} 0.08052872 792
## [19] {canned beer} 0.07768175 764
itemFrequencyPlot(Groceries, topN=10, type="absolute", main="Item Frequency")
rules <- apriori (Groceries, parameter = list(supp = 0.001, conf = 0.5)) #Minimal dukungan ialah 0.001, kepercayaan ialah 0.8
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.5 0.1 1 none FALSE TRUE 5 0.001 1
## maxlen target ext
## 10 rules TRUE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## Absolute minimum support count: 9
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [157 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 done [0.01s].
## writing ... [5668 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
rules_conf <- sort (rules, by="confidence", decreasing=TRUE) #Aturan kepercayaan yang tinggi
inspect(head(rules_conf)) #Menunjukkan dukungan,tingkatan dan kepercayaan untuk semua aturan
## lhs rhs support confidence coverage lift count
## [1] {rice,
## sugar} => {whole milk} 0.001220132 1 0.001220132 3.913649 12
## [2] {canned fish,
## hygiene articles} => {whole milk} 0.001118454 1 0.001118454 3.913649 11
## [3] {root vegetables,
## butter,
## rice} => {whole milk} 0.001016777 1 0.001016777 3.913649 10
## [4] {root vegetables,
## whipped/sour cream,
## flour} => {whole milk} 0.001728521 1 0.001728521 3.913649 17
## [5] {butter,
## soft cheese,
## domestic eggs} => {whole milk} 0.001016777 1 0.001016777 3.913649 10
## [6] {citrus fruit,
## root vegetables,
## soft cheese} => {other vegetables} 0.001016777 1 0.001016777 5.168156 10
rules_lift <- sort (rules, by="lift", decreasing=TRUE) #Aturan tingkatan yang tinggi
inspect(head(rules_lift)) #Menunjukkan dukungan, tingkatan dan kepercayaan untuk semua aturan
## lhs rhs support confidence coverage lift count
## [1] {Instant food products,
## soda} => {hamburger meat} 0.001220132 0.6315789 0.001931876 18.99565 12
## [2] {soda,
## popcorn} => {salty snack} 0.001220132 0.6315789 0.001931876 16.69779 12
## [3] {flour,
## baking powder} => {sugar} 0.001016777 0.5555556 0.001830198 16.40807 10
## [4] {ham,
## processed cheese} => {white bread} 0.001931876 0.6333333 0.003050330 15.04549 19
## [5] {whole milk,
## Instant food products} => {hamburger meat} 0.001525165 0.5000000 0.003050330 15.03823 15
## [6] {other vegetables,
## curd,
## yogurt,
## whipped/sour cream} => {cream cheese } 0.001016777 0.5882353 0.001728521 14.83409 10
Groceries <- apriori(txn, parameter = list(minlen=2, sup = 0.001, conf = 0.05, target="rules"))
summary(Groceries)
## transactions as itemMatrix in sparse format with
## 9835 rows (elements/itemsets/transactions) and
## 169 columns (items) and a density of 0.02609146
##
## most frequent items:
## whole milk other vegetables rolls/buns soda
## 2513 1903 1809 1715
## yogurt (Other)
## 1372 34055
##
## element (itemset/transaction) length distribution:
## sizes
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 55 46
## 17 18 19 20 21 22 23 24 26 27 28 29 32
## 29 14 14 9 11 4 6 1 1 1 1 3 1
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 2.000 3.000 4.409 6.000 32.000
##
## includes extended item information - examples:
## labels level2 level1
## 1 frankfurter sausage meat and sausage
## 2 sausage sausage meat and sausage
## 3 liver loaf sausage meat and sausage
inspect(Groceries[1:20])
## items
## [1] {citrus fruit,
## semi-finished bread,
## margarine,
## ready soups}
## [2] {tropical fruit,
## yogurt,
## coffee}
## [3] {whole milk}
## [4] {pip fruit,
## yogurt,
## cream cheese ,
## meat spreads}
## [5] {other vegetables,
## whole milk,
## condensed milk,
## long life bakery product}
## [6] {whole milk,
## butter,
## yogurt,
## rice,
## abrasive cleaner}
## [7] {rolls/buns}
## [8] {other vegetables,
## UHT-milk,
## rolls/buns,
## bottled beer,
## liquor (appetizer)}
## [9] {pot plants}
## [10] {whole milk,
## cereals}
## [11] {tropical fruit,
## other vegetables,
## white bread,
## bottled water,
## chocolate}
## [12] {citrus fruit,
## tropical fruit,
## whole milk,
## butter,
## curd,
## yogurt,
## flour,
## bottled water,
## dishes}
## [13] {beef}
## [14] {frankfurter,
## rolls/buns,
## soda}
## [15] {chicken,
## tropical fruit}
## [16] {butter,
## sugar,
## fruit/vegetable juice,
## newspapers}
## [17] {fruit/vegetable juice}
## [18] {packaged fruit/vegetables}
## [19] {chocolate}
## [20] {specialty bar}
plot(Groceries, jitter = 0)
## Warning in plot.itemMatrix(Groceries, jitter = 0): Use image() instead of
## plot().
plot(Groceries, method = "grouped", control = list(k = 5))
## Warning in plot.itemMatrix(Groceries, method = "grouped", control = list(k =
## 5)): Use image() instead of plot().
plot(Groceries[1:20], method="graph")
## Warning in plot.itemMatrix(Groceries[1:20], method = "graph"): Use image()
## instead of plot().
plot(Groceries[1:50], method="graph")
## Warning in plot.itemMatrix(Groceries[1:50], method = "graph"): Use image()
## instead of plot().
plot(Groceries[1:20], method="paracoord")
## Warning in plot.itemMatrix(Groceries[1:20], method = "paracoord"): Use image()
## instead of plot().
rules <- apriori(Groceries, parameter = list (supp = 0.001, conf = 0.2, maxlen=3)) #maxlen=3, membatasi elemen dalam aturan menjadi 3
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.2 0.1 1 none FALSE TRUE 5 0.001 1
## maxlen target ext
## 3 rules TRUE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## Absolute minimum support count: 9
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [157 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3
## Warning in apriori(Groceries, parameter = list(supp = 0.001, conf = 0.2, :
## Mining stopped (maxlen reached). Only patterns up to a length of 3 returned!
## done [0.01s].
## writing ... [9958 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
summary(rules)
## set of 9958 rules
##
## rule length distribution (lhs + rhs):sizes
## 1 2 3
## 1 620 9337
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 3.000 3.000 2.938 3.000 3.000
##
## summary of quality measures:
## support confidence coverage lift
## Min. :0.001017 Min. :0.2000 Min. :0.001118 Min. : 0.8028
## 1st Qu.:0.001220 1st Qu.:0.2439 1st Qu.:0.003762 1st Qu.: 1.8658
## Median :0.001627 Median :0.3077 Median :0.005287 Median : 2.3603
## Mean :0.002554 Mean :0.3452 Mean :0.008272 Mean : 2.6338
## 3rd Qu.:0.002542 3rd Qu.:0.4194 3rd Qu.:0.008236 3rd Qu.: 3.0742
## Max. :0.255516 Max. :1.0000 Max. :1.000000 Max. :35.7158
## count
## Min. : 10.00
## 1st Qu.: 12.00
## Median : 16.00
## Mean : 25.12
## 3rd Qu.: 25.00
## Max. :2513.00
##
## mining info:
## data ntransactions support confidence
## Groceries 9835 0.001 0.2
## call
## apriori(data = Groceries, parameter = list(supp = 0.001, conf = 0.2, maxlen = 3))
inspect(head(sort(rules, by ="lift"),5)) #Periksa 5 aturan teratas dengan tingkatan tertinggi
## lhs rhs support
## [1] {bottled beer, red/blush wine} => {liquor} 0.001931876
## [2] {hamburger meat, soda} => {Instant food products} 0.001220132
## [3] {ham, white bread} => {processed cheese} 0.001931876
## [4] {bottled beer, liquor} => {red/blush wine} 0.001931876
## [5] {Instant food products, soda} => {hamburger meat} 0.001220132
## confidence coverage lift count
## [1] 0.3958333 0.004880529 35.71579 19
## [2] 0.2105263 0.005795628 26.20919 12
## [3] 0.3800000 0.005083884 22.92822 19
## [4] 0.4130435 0.004677173 21.49356 19
## [5] 0.6315789 0.001931876 18.99565 12
plot(rules)
## To reduce overplotting, jitter is added! Use jitter = 0 to prevent jitter.
plot(rules , shading="order", control=list(main="two-key plot"))
## To reduce overplotting, jitter is added! Use jitter = 0 to prevent jitter.
RulesBev1 <- subset(rules, subset = rhs %ain% "soda")
summary(RulesBev1)
## set of 699 rules
##
## rule length distribution (lhs + rhs):sizes
## 2 3
## 64 635
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.000 3.000 3.000 2.908 3.000 3.000
##
## summary of quality measures:
## support confidence coverage lift
## Min. :0.001017 Min. :0.2000 Min. :0.001322 Min. :1.147
## 1st Qu.:0.001220 1st Qu.:0.2390 1st Qu.:0.004067 1st Qu.:1.371
## Median :0.001627 Median :0.2807 Median :0.005592 Median :1.610
## Mean :0.002408 Mean :0.2994 Mean :0.008989 Mean :1.717
## 3rd Qu.:0.002440 3rd Qu.:0.3415 3rd Qu.:0.009049 3rd Qu.:1.958
## Max. :0.038332 Max. :0.7692 Max. :0.183935 Max. :4.411
## count
## Min. : 10.00
## 1st Qu.: 12.00
## Median : 16.00
## Mean : 23.68
## 3rd Qu.: 24.00
## Max. :377.00
##
## mining info:
## data ntransactions support confidence
## Groceries 9835 0.001 0.2
## call
## apriori(data = Groceries, parameter = list(supp = 0.001, conf = 0.2, maxlen = 3))
inspect(head(sort(RulesBev1, by ="lift"),5))
## lhs rhs support confidence coverage
## [1] {coffee, misc. beverages} => {soda} 0.001016777 0.7692308 0.001321810
## [2] {pastry, misc. beverages} => {soda} 0.001220132 0.6315789 0.001931876
## [3] {chicken, waffles} => {soda} 0.001220132 0.5714286 0.002135231
## [4] {tropical fruit, canned beer} => {soda} 0.001728521 0.5666667 0.003050330
## [5] {bottled water, cake bar} => {soda} 0.001016777 0.5555556 0.001830198
## lift count
## [1] 4.411303 10
## [2] 3.621912 12
## [3] 3.276968 12
## [4] 3.249660 17
## [5] 3.185941 10