\[
\begin{aligned}
y_{i, j} & =\mu+a_j+\epsilon_{i, j} \\
\left\{a_j\right\} & \sim \text { iid } N\left(0, \tau^2\right) \\
\left\{\epsilon_{i, j}\right\} & \sim \text { iid } N\left(0, \sigma^2\right)
\end{aligned}
\]
Express this model as \(\mathbf{y}_j=\mathbf{X}_j \boldsymbol{\beta}+\mathbf{Z}_j \mathbf{a}_j+\boldsymbol{\epsilon}_{\boldsymbol{j}}\)
\[
\beta=\mu, a_j=a_j
\]
\[
\mathbf{X}_j=\mathbf{Z}_j=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right] \quad \text { for each } j \in\{1, \ldots, m\}
\]