Ovaj dokument se sADRZI SAMO POBJEDNICKI MODEL P2.AGE.NEW. OVAJ SHEET SADRZI PRAAAVE KOEFF I IZADJE DA U PROSJEKU ZAPOSLENI TROSI 60 NA COMMUTING.

According to email from ismir 06.01.2024. I will include transport costs only fro hh where someone works so variable Activ_01,….Acitiv_09 ==1 or 2

Importing data

keep necessary vars 329

Analiza transporta

##subset df

library (dplyr)
hbs.transport <- hbs_shorter %>% select(contains(c("SifraDom","Entity","Canton","naziv_Opcine","RurUrb","ncomp","finweight",  "poor","Relat","Sex","Age", "Educ","Activ", "HH_Monthly","S6", "COICOP_07", "_DA", "E07_a", "E07_b", "E07_c", "E07_d","E07_e", "E07_f")))

Label unlabeled

Varijable koje cu koristi u transport cost

“mj_Q02_01_AM_S6” = Mj.Godisnja registracija vozila (obavezno osiguranje, tehnički pregled i ostali izdaci vezani za registraciju vozila) “mj_Q02_02_AM_S6” = Mj. Kasko osiguranje godisnje “mj_Q02_03_AM_S6” = Gume, sve vrste “mj_Q02_04_AM_S6” = Ostali rezervni dijelovi i pribor (svjećice, akumulatori itd.) “mj_Q02_05_AM_S6” = Pribor za osobna vozila (prva pomoć, trokut, uže za vuču, signalni prsluci i sl.) “mj_Q02_06_AM_S6” = Ulja, maziva, antifriz, tečnost za brisače itd “mj_Q02_07_AM_S6” = Popravak i pranje vozila “mj_Q02_08_AM_S6” = Zakup privatne garaže ili parking mjesta “mj_Q02_09_AM_S6” = Unajmljivanje vozila bez vozača (rent-a-car) “mj_Q02_10_AM_S6” = Putarina “mj_Q04_02_AM_S6” = Koliki je bio iznos_Skolski autobus “mj_Q04_03_AM_S6” = Koliki je bio iznos_Mjesecne ili sezonske karte za gradski prevoz “mj_Q04_04_AM_S6” = Koliki je bio iznos_Karte za prevoz vozom “mj_DA_S_04” = Pojedinačne karte za gradski prevoz tramvajem “mj_DA_S_05” = Pojedinačne karte za gradski prevoz autobusom, trolejbusom i minibusom “mj_DA_S_06” = Taksi “mj_DA_S_07” = Parking na dnevnoj osnovi


Formiraj varijablu broj clanova koji rade n.employ


Napravi varijablu broj clanova u domacinstvu koji rade tj. Active = 1 (puno.r.v)i/ili 2 (pola r.v.) !

#sta Active sadrzi
str(hbs.transport$Activ_1)
##  num [1:7702] 8 8 8 8 2 7 8 3 8 8 ...
##  - attr(*, "label")= chr "Status tekuce aktivnost (1-puno r.v.; 2-pola r.v.; 3-neyaposlen; 4-trazi prvo zaposlenje; 5-Domacica; 6-Student"| __truncated__
##  - attr(*, "format.spss")= chr "F1.0"
##  - attr(*, "display_width")= int 9

Izbaci one u kojima niko ne radi

hbs.transport <- hbs.transport %>% dplyr::filter(amr.br.cl.radi == 1 |amr.br.cl.radi == 2 | amr.br.cl.radi == 3 | amr.br.cl.radi == 4 | amr.br.cl.radi == 5 | amr.br.cl.radi == 6 )
table (hbs.transport$amr.br.cl.radi) # nema vise domacinstava u kojima niko ne radi
## 
##    1    2    3    4    5    6 
## 2572 1410  261   54    8    2

Formiraj varijablu od hbs.transport$amr.br.cl.radi da bude 1,2,3 i vise i nazovi je n.employ

library(dplyr)
hbs.transport <- hbs.transport %>% mutate(n.employ = case_when(amr.br.cl.radi == 1 ~"one",amr.br.cl.radi ==2 ~ "two", amr.br.cl.radi %in% c(3,4,5,6) ~ "three and more")) 
table(hbs.transport$n.employ)
## 
##            one three and more            two 
##           2572            325           1410
hbs.transport$n.employ <- factor (hbs.transport$n.employ)
round(prop.table(table(hbs.transport$n.employ)),3)*100
## 
##            one three and more            two 
##           59.7            7.5           32.7

Relevel n.employ

This will be one of the independent

Labelled whats unlabelled

library(labelled)

var_label(hbs.transport$Q01_03_NW_OT_YN_S6) <- labelled_spss("Koju vrstu vozila vase domacinstvo posjeduje? Iskljucujuci vozila koja se koriste u poslovne svrhe")
var_label(hbs.transport$Q01_01_NW_DS_YN_S6) <- labelled_spss("Koju vrstu vozila vase domacinstvo posjeduje? Iskljucujuci vozila koja se koriste u poslovne svrhe")
var_label(hbs.transport$Q01_02_NW_BZ_YN_S6) <- labelled_spss("Koju vrstu vozila vase domacinstvo posjeduje? Iskljucujuci vozila koja se koriste u poslovne svrhe")

Mutate Educ_1

Steceno obrazovanje: 1 - bez skole; 2- nepotpuna osnovna 8.g.skola 3 - nepotpuna osnovna 9.g. skola; 4-osnovna skola, 5-srednja skola, 6-specijalizacia poslije s.s; 7 - Visa skola; 8 - Fakultet; 9 - Master; 10 - Doktorat

prop.table(table(hbs.transport$Educ_1))
## 
##            1            2            3            4            5            6 
## 0.0253076387 0.0390062689 0.0006965405 0.1827257952 0.6073833295 0.0085906664 
##            7            8            9           10 
## 0.0394706292 0.0870675644 0.0069654052 0.0027861621

Mislim da je bolje napraviti, radi strukture slijedecu podjelu: 1 - bez skole, 2 i 3 nepotpuna osnovna, 4 osnovna, 5 i 6 srednja , 7 visa i 8,9 10 visoka, master i doktorat. ovo se razlikuje od prethodnog koji je koristen u slucaju wage i koji je bio slijdeci: bez osnovne skole (1,2,3), osnovna skola (4), srednja skola (5,6), fakultet (7,8,9,10).

#Relevel Educ

hbs.transport$Educ.1 <- forcats::fct_relevel (hbs.transport$Educ.1, "no education","no elementary", "elementary", "high schl","college", "university")
table(hbs.transport$Educ.1)
## 
##  no education no elementary    elementary     high schl       college 
##           109           171           787          2653           170 
##    university 
##           417
str(hbs.transport$Educ.1)
##  Factor w/ 6 levels "no education",..: 4 4 4 4 4 3 3 4 4 5 ...

Formiraj Activ.1 na bazi transport

Ovo vec nema smisla zato sto ne uzimam Activity of hh vec imam da su oni koji rade. Probala sam sa varijabntom da uzmem Activ.1 za prva dva clana ali mislim da to nije u redu jer se citavo vrijeme fokusirma na prvog clana domacinstva i po obrazovanju i po spolu i po godinama. ne uyimam druge radi visoke korelacije. recimo Age_1 i Age_2 imaju korelaciju 65 a spol 90

table (hbs.transport$Activ_1) #mislim da je ovdje bolje staviti dummy prvog clana
## 
##    1    2    3    4    5    6    7    8    9 
## 2707  374  250   29  179    1   60  685   22
hbs.transport <- hbs.transport %>% mutate(Activ.1 = case_when(Activ_1 == 1  ~"1", Activ_1!=1 ~ 
                                                            "0"))
table (hbs.transport$Activ.1) #Mislim da mi je ova varijabla puno bolja, dakle imam oni koji su full time bilo prvi ili drugi clan je 1 ostali su 0
## 
##    0    1 
## 1600 2707

###Relevel Activ.1

hbs.transport$Activ.1 <- forcats::fct_relevel (hbs.transport$Activ.1, "1", "0")
table(hbs.transport$Activ.1)
## 
##    1    0 
## 2707 1600

Mutate ncomp

11 + clanova staviti u jednu varijabli

table (hbs.transport$ncomp) #mislim da je ovdje bolje staviti dummy prvog clana
## 
##    1    2    3    4    5    6    7    8    9   10   11   13 
##  223  707 1020 1315  620  283   88   31   10    4    5    1
hbs.transport <- hbs.transport %>% mutate(ncomp1 = case_when(ncomp %in% c(11,13)  ~"11+", ncomp  == 1 ~ "one", ncomp == 2 ~ "two", ncomp == 3 ~ "three", ncomp==4 ~ "four", ncomp ==5 ~ "five", ncomp==6 ~ "six", ncomp == 7 ~ "seven", ncomp == 8 ~ "eight", ncomp == 9 ~ "nine", ncomp == 10 ~ "ten"))
table (hbs.transport$ncomp1) #Mislim da mi je ova varijabla puno bolja, dakle imam oni koji su full time bilo prvi ili drugi clan je 1 ostali su 0
## 
##   11+ eight  five  four  nine   one seven   six   ten three   two 
##     6    31   620  1315    10   223    88   283     4  1020   707

#Relevel ncomp1

hbs.transport$ncomp1 <- forcats::fct_relevel (hbs.transport$ncomp1, "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "11+")
table(hbs.transport$ncomp1)
## 
##   one   two three  four  five   six seven eight  nine   ten   11+ 
##   223   707  1020  1315   620   283    88    31    10     4     6

Kad sam uporedila regresije sa ncomp1 i ncomp dobila sam da je ipak bolje da imaju ncomp bude vise tih varijabli sign kao i opstinskih varijabli pa cu uraditi relevel za to

#Relevel ncomp

hbs.transport$ncomp <- forcats::fct_relevel (as.factor(hbs.transport$ncomp), "1", "2", "3", "4", "5", "6", "7", "8", "9","10","11","13")
table(hbs.transport$ncomp)
## 
##    1    2    3    4    5    6    7    8    9   10   11   13 
##  223  707 1020 1315  620  283   88   31   10    4    5    1

Drop upper and low

summary(hbs.transport$mj.trans.AM)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   31.67   47.98  102.05  113.27 2509.05
summary (hbs.transport$mj.trans.AM/hbs.transport$amr.br.cl.radi) #ispada da ovaj koji trosi 2,509 KM mjesecno ima samo 1 clana zaposlenog tako da cu brisati samo upper percentiles.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   18.75   37.50   74.97   81.67 2509.05
table(hbs.transport$mj.trans.AM==0) #imamo 581 domacinstva koja nisu trosila na transport a imaju zaposlenog clana familije. 590??(24.11.2024)
## 
## FALSE  TRUE 
##  3717   590
plot(density(hbs.transport$mj.trans.AM))

# Top 1% is removed 
hbs.transport.drop <-  hbs.transport %>% dplyr::filter(mj.trans.AM < quantile (hbs.transport$mj.trans.AM, 0.99, na.rm = T) )
summary(hbs.transport.drop$mj.trans.AM)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   31.67   46.67   91.19  110.24  745.50
summary(hbs.transport.drop$mj.trans.AM/hbs.transport.drop$amr.br.cl.radi) #i ovdje ispada da domacinstva u koijma 1 clan rad potrosi se na transport 745KM.. ali ovo je vec realnije.. pa cu ostaviti
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   18.75   37.50   67.91   79.17  745.50
plot(density(hbs.transport.drop$mj.trans.AM)) #realnije je uzeti median

#7551

Check again low frequency municipality after deleting percentils

low.freq.1 <- hbs.transport.drop %>%
  select(c(naziv_Opcine, mj.trans.AM)) %>%
  group_by(naziv_Opcine) %>%
  summarise (n = n()) %>% 
  arrange (desc(n))%>%
  dplyr::filter(n<10) 
low.freq.1$naziv_Opcine #21 opstina je low.frequency
##  [1] "Cajnice"      "Hadzici"      "Kostajnica"   "Kupres"       "Mrkonjic"    
##  [6] "Bileca"       "Srebrenica"   "D-Samac"      "Doboj-Jug"    "Milici"      
## [11] "Odzak"        "Teocak"       "Pelagicevo"   "Vares"        "B.Grahovo"   
## [16] "Han Pijesak"  "Vukosavlje"   "Jablanica"    "Olovo"        "Ostra Luka"  
## [21] "Sekovici"     "Trnovo"       "Usora"        "Berkovici"    "Donji Zabar" 
## [26] "Kalinovik"    "Osmaci"       "Petrovo"      "Sapna"        "Sipovo"      
## [31] "Jezero"       "Krupa na Uni" "Neum"         "Ravno"       
## attr(,"label")
## [1] "Naziv opcine"
## attr(,"format.spss")
## [1] "A12"
dim(hbs.transport.drop) #4234 obs i 
## [1] 4263  208
unique (hbs.transport.drop$naziv_Opcine) #131 opstina dakle sa brisanjem trebalo bi biti 97
##   [1] "B.Grahovo"    "B.Krupa"      "B.Petrovac"   "Banovici"     "Banja Luka"  
##   [6] "Berkovici"    "Bihac"        "Bijeljina"    "Bileca"       "Bratunac"    
##  [11] "Brcko"        "Breza"        "Brod"         "Bugojno"      "Busovaca"    
##  [16] "Buzim"        "C.Sarajevo"   "Cajnice"      "Capljina"     "Cazin"       
##  [21] "Celic"        "Celinac"      "Citluk"       "D-Samac"      "D.Vakuf"     
##  [26] "Derventa"     "Doboj"        "Doboj-Istok"  "Doboj-Jug"    "Donji Zabar" 
##  [31] "Drvar"        "Foca - RS"    "Fojnica"      "G.Vakuf"      "Gacko"       
##  [36] "Glamoc"       "Gorazde"      "Gracanica"    "Grad Mostar"  "Gradacac"    
##  [41] "Gradiska"     "Grude"        "Hadzici"      "Han Pijesak"  "I.Ilidza"    
##  [46] "Ilidza"       "Ilijas"       "Jablanica"    "Jajce"        "Jezero"      
##  [51] "K.Dubica"     "Kakanj"       "Kalesija"     "Kalinovik"    "Kiseljak"    
##  [56] "Kladanj"      "Kljuc"        "Knezevo"      "Konjic"       "Kostajnica"  
##  [61] "Kotor Varos"  "Kresevo"      "Krupa na Uni" "Kupres"       "Laktasi"     
##  [66] "Livno"        "Lopare"       "Lukavac"      "Ljubuski"     "Maglaj"      
##  [71] "Milici"       "Modrica"      "Mrkonjic"     "N.G.Sarajevo" "N.Gorazde"   
##  [76] "N.Sarajevo"   "N.Travnik"    "Neum"         "Nevesinje"    "Novi Grad"   
##  [81] "Odzak"        "Olovo"        "Orasje"       "Osmaci"       "Ostra Luka"  
##  [86] "Pale"         "Pelagicevo"   "Petrovo"      "Posusje"      "Prijedor"    
##  [91] "Prnjavor"     "Prozor"       "Ravno"        "Ribnik"       "Rogatica"    
##  [96] "Rudo"         "S.Brijeg"     "S.G.Sarajevo" "Samac"        "Sanski Most" 
## [101] "Sapna"        "Sekovici"     "Sipovo"       "Sokolac"      "Srbac"       
## [106] "Srebrenica"   "Srebrenik"    "Stolac"       "Teocak"       "Tesanj"      
## [111] "Teslic"       "Tomislavgrad" "Travnik"      "Trebinje"     "Trnovo"      
## [116] "Tuzla"        "Ugljevik"     "Usora"        "V.Kladusa"    "Vares"       
## [121] "Visegrad"     "Visoko"       "Vitez"        "Vlasenica"    "Vogosca"     
## [126] "Vukosavlje"   "Zavidovici"   "Zenica"       "Zepce"        "Zivinice"    
## [131] "Zvornik"

Delete low frequency obs <10 for hbs.transport.drop

Analiza mj.trans.AM

library(ggplot2)
dim(hbs.transport.drop.1) #4096
## [1] 4096  208
table (hbs.transport.drop.1$naziv_Opcine)
## 
##      B.Krupa   B.Petrovac     Banovici   Banja Luka        Bihac    Bijeljina 
##           28           11           23          215           69          180 
##     Bratunac        Brcko        Breza         Brod      Bugojno     Busovaca 
##           11          246           13           22           56           25 
##        Buzim   C.Sarajevo     Capljina        Cazin        Celic      Celinac 
##           11           55           21           56           11           11 
##       Citluk      D.Vakuf     Derventa        Doboj  Doboj-Istok        Drvar 
##           23           34           29           55           12           13 
##    Foca - RS      Fojnica      G.Vakuf        Gacko       Glamoc      Gorazde 
##           21           16           25           19           10           31 
##    Gracanica  Grad Mostar     Gradacac     Gradiska        Grude     I.Ilidza 
##           77          168           35           30           20           13 
##       Ilidza       Ilijas        Jajce     K.Dubica       Kakanj     Kalesija 
##           49           15           21           37           72           28 
##     Kiseljak      Kladanj        Kljuc      Knezevo       Konjic  Kotor Varos 
##           36           13           21           14           47           16 
##      Kresevo      Laktasi        Livno       Lopare      Lukavac     Ljubuski 
##           15           42           22           27           44           26 
##       Maglaj      Modrica N.G.Sarajevo    N.Gorazde   N.Sarajevo    N.Travnik 
##           40           34          160           10           49           49 
##    Nevesinje    Novi Grad       Orasje         Pale      Posusje     Prijedor 
##           11           47           25           20           13           82 
##     Prnjavor       Prozor       Ribnik     Rogatica         Rudo     S.Brijeg 
##           37           11           14           14           16           37 
## S.G.Sarajevo        Samac  Sanski Most      Sokolac        Srbac    Srebrenik 
##           36           51           73           11           19           68 
##       Stolac       Tesanj       Teslic Tomislavgrad      Travnik     Trebinje 
##           11           59           30           19           97           33 
##        Tuzla     Ugljevik    V.Kladusa     Visegrad       Visoko        Vitez 
##          112           17           47           12           50           46 
##    Vlasenica      Vogosca   Zavidovici       Zenica        Zepce     Zivinice 
##           16           20           55          163           10           78 
##      Zvornik 
##           54
summary (hbs.transport.drop.1$mj.trans.AM)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   31.67   47.50   91.24  110.00  745.50
sd (hbs.transport.drop.1$mj.trans.AM)
## [1] 113.6885
ggplot(data=hbs.transport.drop.1, mapping = aes(mj.trans.AM)) + geom_density() + xlab("Monthly household expenditure on transport (BAM)")

dim(hbs.transport.drop.1)
## [1] 4096  208
round(prop.table(table(hbs.transport.drop.1$ncomp)),3)*100
## 
##    1    2    3    4    5    6    7    8    9   10   11   13 
##  5.2 16.5 23.9 30.4 14.4  6.5  2.0  0.7  0.2  0.1  0.1  0.0
round(prop.table(table(hbs.transport.drop.1$Educ_1)),3)*100
## 
##    1    2    3    4    5    6    7    8    9   10 
##  2.5  3.9  0.1 18.2 60.9  0.9  3.8  8.8  0.7  0.3

Sada winning model ali sa hbs.transport.drop.1

table(hbs.transport.drop.1$ncomp1) #no Nas
## 
##   one   two three  four  five   six seven eight  nine   ten   11+ 
##   212   674   979  1247   588   267    82    29     9     4     5
prop.table(table(hbs.transport.drop.1$ncomp1))#no Nas
## 
##          one          two        three         four         five          six 
## 0.0517578125 0.1645507812 0.2390136719 0.3044433594 0.1435546875 0.0651855469 
##        seven        eight         nine          ten          11+ 
## 0.0200195312 0.0070800781 0.0021972656 0.0009765625 0.0012207031
summary (hbs.transport.drop.1$n.employ) #no Nas.
##            one            two three and more 
##           2448           1341            307
str(hbs.transport.drop.1$n.employ) 
##  Factor w/ 3 levels "one","two","three and more": 1 1 1 1 1 2 2 2 2 1 ...
prop.table(table(hbs.transport.drop.1$n.employ))#no Nas
## 
##            one            two three and more 
##     0.59765625     0.32739258     0.07495117
table (hbs.transport.drop.1$Activ.1) #probacu bez ovoga mozda mi se sudara sa drugim..
## 
##    1    0 
## 2575 1521
prop.table(table(hbs.transport.drop.1$Activ.1))#no Nas
## 
##         1         0 
## 0.6286621 0.3713379
summary (hbs.transport.drop.1$Age_1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   21.00   43.75   52.00   51.62   59.00   95.00
sd(hbs.transport.drop.1$Age_1)
## [1] 11.90181
prop.table (table (hbs.transport.drop.1$Sex_1))
## 
##         1         2 
## 0.8479004 0.1520996

Correlation of indipendant

library(polycor)

polychor (hbs.transport.drop.1$ncomp, hbs.transport.drop.1$n.employ)
## [1] 0.3791869
#0.379 nije visoka i stavicu ih u model
polychor (hbs.transport.drop.1$n.employ, hbs.transport.drop.1$Activ.1) #negativna korelacija i niska
## [1] -0.2362859
polychor (hbs.transport.drop.1$n.employ, hbs.transport.drop.1$Activ.1) #negativna i -0.286 #n.employ.1 je samo u transport1 bazi
## [1] -0.2362859

Bila sam budala i dodavala + 0.001 umjesto + 1 jer je log(1)=0

#prethodni sa ncomp1 i normal Activ
p2.age.new <- lm (log(mj.trans.AM + 1) ~ factor (Sex_1)+ factor(Educ.1) + factor (Activ.1) + n.employ + factor (ncomp1) + as.numeric(Age_1) + as.numeric(Age_1^2) +factor (naziv_Opcine), data = hbs.transport.drop.1) 
summary(p2.age.new)
## 
## Call:
## lm(formula = log(mj.trans.AM + 1) ~ factor(Sex_1) + factor(Educ.1) + 
##     factor(Activ.1) + n.employ + factor(ncomp1) + as.numeric(Age_1) + 
##     as.numeric(Age_1^2) + factor(naziv_Opcine), data = hbs.transport.drop.1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8254 -0.5045  0.2407  0.9233  4.1550 
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                       1.1505558  0.4797694   2.398 0.016524 *  
## factor(Sex_1)2                   -0.2260883  0.0741011  -3.051 0.002295 ** 
## factor(Educ.1)no elementary      -0.0900952  0.2058774  -0.438 0.661689    
## factor(Educ.1)elementary         -0.0150239  0.1808393  -0.083 0.933793    
## factor(Educ.1)high schl           0.3778419  0.1819172   2.077 0.037866 *  
## factor(Educ.1)college             0.5880373  0.2171602   2.708 0.006801 ** 
## factor(Educ.1)university          0.6674755  0.1972142   3.385 0.000720 ***
## factor(Activ.1)0                 -0.1899942  0.0613495  -3.097 0.001969 ** 
## n.employtwo                       0.3142005  0.0563010   5.581 2.55e-08 ***
## n.employthree and more            0.3703289  0.1022819   3.621 0.000298 ***
## factor(ncomp1)two                 0.6677931  0.1257312   5.311 1.15e-07 ***
## factor(ncomp1)three               1.0225817  0.1248022   8.194 3.38e-16 ***
## factor(ncomp1)four                1.3282649  0.1237333  10.735  < 2e-16 ***
## factor(ncomp1)five                1.3552052  0.1336170  10.142  < 2e-16 ***
## factor(ncomp1)six                 1.5426339  0.1533921  10.057  < 2e-16 ***
## factor(ncomp1)seven               1.8124582  0.2117077   8.561  < 2e-16 ***
## factor(ncomp1)eight               0.9510854  0.3174765   2.996 0.002754 ** 
## factor(ncomp1)nine                1.7413764  0.5369215   3.243 0.001191 ** 
## factor(ncomp1)ten                 2.6003379  0.7955753   3.269 0.001090 ** 
## factor(ncomp1)11+                 2.1920016  0.7115032   3.081 0.002079 ** 
## as.numeric(Age_1)                 0.0154416  0.0140904   1.096 0.273191    
## as.numeric(Age_1^2)              -0.0001123  0.0001355  -0.828 0.407482    
## factor(naziv_Opcine)B.Petrovac   -0.3776748  0.5515335  -0.685 0.493528    
## factor(naziv_Opcine)Banovici      1.0374490  0.4380510   2.368 0.017916 *  
## factor(naziv_Opcine)Banja Luka    0.8319756  0.3165001   2.629 0.008605 ** 
## factor(naziv_Opcine)Bihac         0.7092533  0.3502148   2.025 0.042914 *  
## factor(naziv_Opcine)Bijeljina     0.0995604  0.3194100   0.312 0.755284    
## factor(naziv_Opcine)Bratunac      0.5256885  0.5513729   0.953 0.340437    
## factor(naziv_Opcine)Brcko         0.5648749  0.3125690   1.807 0.070807 .  
## factor(naziv_Opcine)Breza        -0.0250029  0.5208487  -0.048 0.961715    
## factor(naziv_Opcine)Brod          0.1702639  0.4443096   0.383 0.701584    
## factor(naziv_Opcine)Bugojno       0.5092489  0.3617734   1.408 0.159314    
## factor(naziv_Opcine)Busovaca      1.5139902  0.4274176   3.542 0.000401 ***
## factor(naziv_Opcine)Buzim         0.2525970  0.5510536   0.458 0.646698    
## factor(naziv_Opcine)C.Sarajevo    0.5672652  0.3651561   1.553 0.120386    
## factor(naziv_Opcine)Capljina      1.4569535  0.4468256   3.261 0.001121 ** 
## factor(naziv_Opcine)Cazin         0.4934372  0.3576542   1.380 0.167772    
## factor(naziv_Opcine)Celic         0.2538266  0.5516448   0.460 0.645450    
## factor(naziv_Opcine)Celinac       0.8521213  0.5514201   1.545 0.122348    
## factor(naziv_Opcine)Citluk        1.6963959  0.4395818   3.859 0.000116 ***
## factor(naziv_Opcine)D.Vakuf       0.7265216  0.3982888   1.824 0.068211 .  
## factor(naziv_Opcine)Derventa      0.3851238  0.4155416   0.927 0.354087    
## factor(naziv_Opcine)Doboj         0.7510947  0.3628484   2.070 0.038517 *  
## factor(naziv_Opcine)Doboj-Istok   1.0621164  0.5340125   1.989 0.046777 *  
## factor(naziv_Opcine)Drvar        -0.1032951  0.5216447  -0.198 0.843041    
## factor(naziv_Opcine)Foca - RS     0.4941934  0.4494446   1.100 0.271588    
## factor(naziv_Opcine)Fojnica       1.3066619  0.4869032   2.684 0.007313 ** 
## factor(naziv_Opcine)G.Vakuf       0.9023135  0.4277387   2.109 0.034964 *  
## factor(naziv_Opcine)Gacko        -0.1344266  0.4621885  -0.291 0.771183    
## factor(naziv_Opcine)Glamoc       -0.4467542  0.5729998  -0.780 0.435628    
## factor(naziv_Opcine)Gorazde       0.2938519  0.4063192   0.723 0.469597    
## factor(naziv_Opcine)Gracanica     0.8304466  0.3446174   2.410 0.016008 *  
## factor(naziv_Opcine)Grad Mostar   0.8545848  0.3210955   2.661 0.007811 ** 
## factor(naziv_Opcine)Gradacac      1.1328375  0.3947147   2.870 0.004126 ** 
## factor(naziv_Opcine)Gradiska      1.2253599  0.4101429   2.988 0.002829 ** 
## factor(naziv_Opcine)Grude         0.7754123  0.4549501   1.704 0.088386 .  
## factor(naziv_Opcine)I.Ilidza     -0.1016630  0.5219792  -0.195 0.845587    
## factor(naziv_Opcine)Ilidza        0.7202101  0.3698139   1.947 0.051546 .  
## factor(naziv_Opcine)Ilijas        0.0054865  0.4964606   0.011 0.991183    
## factor(naziv_Opcine)Jajce         0.7977866  0.4493668   1.775 0.075915 .  
## factor(naziv_Opcine)K.Dubica      0.7056375  0.3902432   1.808 0.070651 .  
## factor(naziv_Opcine)Kakanj        0.3589538  0.3475932   1.033 0.301815    
## factor(naziv_Opcine)Kalesija      1.0474252  0.4171122   2.511 0.012074 *  
## factor(naziv_Opcine)Kiseljak      1.1095210  0.3928253   2.824 0.004760 ** 
## factor(naziv_Opcine)Kladanj       0.7145529  0.5205399   1.373 0.169918    
## factor(naziv_Opcine)Kljuc         0.3275010  0.4490867   0.729 0.465886    
## factor(naziv_Opcine)Knezevo       0.3404024  0.5080746   0.670 0.502906    
## factor(naziv_Opcine)Konjic        0.3591983  0.3729116   0.963 0.335492    
## factor(naziv_Opcine)Kotor Varos   0.4801895  0.4859631   0.988 0.323154    
## factor(naziv_Opcine)Kresevo       1.0856282  0.4987258   2.177 0.029554 *  
## factor(naziv_Opcine)Laktasi       0.8648153  0.3806588   2.272 0.023146 *  
## factor(naziv_Opcine)Livno         0.3526910  0.4424478   0.797 0.425420    
## factor(naziv_Opcine)Lopare        0.7584298  0.4197502   1.807 0.070860 .  
## factor(naziv_Opcine)Lukavac       1.0099877  0.3766167   2.682 0.007354 ** 
## factor(naziv_Opcine)Ljubuski      1.5881069  0.4261135   3.727 0.000196 ***
## factor(naziv_Opcine)Maglaj        0.0543514  0.3836179   0.142 0.887339    
## factor(naziv_Opcine)Modrica       0.4306975  0.3971366   1.085 0.278206    
## factor(naziv_Opcine)N.G.Sarajevo  0.8521916  0.3224844   2.643 0.008260 ** 
## factor(naziv_Opcine)N.Gorazde     1.4668142  0.5719795   2.564 0.010370 *  
## factor(naziv_Opcine)N.Sarajevo    0.2987892  0.3716899   0.804 0.421522    
## factor(naziv_Opcine)N.Travnik     0.5789122  0.3702454   1.564 0.117993    
## factor(naziv_Opcine)Nevesinje     0.3347484  0.5534635   0.605 0.545330    
## factor(naziv_Opcine)Novi Grad    -0.0477252  0.3722468  -0.128 0.897990    
## factor(naziv_Opcine)Orasje        1.1081282  0.4293639   2.581 0.009891 ** 
## factor(naziv_Opcine)Pale         -0.3578067  0.4559481  -0.785 0.432645    
## factor(naziv_Opcine)Posusje       0.7400731  0.5200333   1.423 0.154778    
## factor(naziv_Opcine)Prijedor      0.6675458  0.3435768   1.943 0.052095 .  
## factor(naziv_Opcine)Prnjavor      0.8499690  0.3914054   2.172 0.029946 *  
## factor(naziv_Opcine)Prozor        0.5571052  0.5552704   1.003 0.315775    
## factor(naziv_Opcine)Ribnik        0.2680127  0.5098592   0.526 0.599154    
## factor(naziv_Opcine)Rogatica     -0.3667612  0.5085011  -0.721 0.470792    
## factor(naziv_Opcine)Rudo          0.5131765  0.4872562   1.053 0.292315    
## factor(naziv_Opcine)S.Brijeg      1.2726689  0.3925248   3.242 0.001196 ** 
## factor(naziv_Opcine)S.G.Sarajevo  0.6968395  0.3935049   1.771 0.076662 .  
## factor(naziv_Opcine)Samac         0.5303376  0.3676873   1.442 0.149279    
## factor(naziv_Opcine)Sanski Most   0.6261049  0.3471940   1.803 0.071412 .  
## factor(naziv_Opcine)Sokolac      -0.3603452  0.5535479  -0.651 0.515101    
## factor(naziv_Opcine)Srbac         0.6694379  0.4617654   1.450 0.147211    
## factor(naziv_Opcine)Srebrenik     0.0478550  0.3507034   0.136 0.891469    
## factor(naziv_Opcine)Stolac        1.3577009  0.5516832   2.461 0.013897 *  
## factor(naziv_Opcine)Tesanj        0.3373002  0.3585180   0.941 0.346855    
## factor(naziv_Opcine)Teslic        0.0425347  0.4097788   0.104 0.917334    
## factor(naziv_Opcine)Tomislavgrad  1.3567829  0.4633199   2.928 0.003427 ** 
## factor(naziv_Opcine)Travnik       1.0287700  0.3349072   3.072 0.002142 ** 
## factor(naziv_Opcine)Trebinje      0.0978234  0.4014138   0.244 0.807478    
## factor(naziv_Opcine)Tuzla         0.7319490  0.3318877   2.205 0.027482 *  
## factor(naziv_Opcine)Ugljevik      0.7206744  0.4765402   1.512 0.130536    
## factor(naziv_Opcine)V.Kladusa     0.9439790  0.3710007   2.544 0.010984 *  
## factor(naziv_Opcine)Visegrad     -0.6144386  0.5364255  -1.145 0.252099    
## factor(naziv_Opcine)Visoko        0.7017306  0.3683522   1.905 0.056845 .  
## factor(naziv_Opcine)Vitez         1.0624150  0.3747041   2.835 0.004601 ** 
## factor(naziv_Opcine)Vlasenica     0.3591127  0.4865950   0.738 0.460551    
## factor(naziv_Opcine)Vogosca       0.9660204  0.4554038   2.121 0.033963 *  
## factor(naziv_Opcine)Zavidovici   -0.1761700  0.3632730  -0.485 0.627737    
## factor(naziv_Opcine)Zenica       -0.0644010  0.3214624  -0.200 0.841227    
## factor(naziv_Opcine)Zepce         0.3224940  0.5740909   0.562 0.574320    
## factor(naziv_Opcine)Zivinice      1.0577272  0.3445152   3.070 0.002154 ** 
## factor(naziv_Opcine)Zvornik       0.8324091  0.3632602   2.291 0.021987 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.539 on 3978 degrees of freedom
## Multiple R-squared:  0.1784, Adjusted R-squared:  0.1542 
## F-statistic: 7.382 on 117 and 3978 DF,  p-value: < 2.2e-16
#ovaj ima 35 sign munici ali 15.5 r2 for 90 

Mail od Ismira 5.8: uzeti ovaj p2.age jer uzima i godine i treba ih ukljuciti.

NE uzimam nista od drugog clana, iako godine drugog clana su znacajne ali mi nekako se cini da nije dobro miksati prvog i drugog.. a mozda i je mogu provjeriti sa Ismirom.

Nakon razmisljanja shvatila sam da ipak nije bas smisleno oslanjati se malo na prvog pa malo na drugog clana domacinstva.. nekako nije bas smisleno a i kada okrenem u novac dobijem vema male iznose oko 3 km prosjecno po domacinstvu tako da cu ipak uzeti model gjde je sve oko 1 clana domacinstva A to je rekao i Ismir

Extracting the coefficients from the WINNING model on drop.1 database

model.coef.empl <- summary(p2.age.new)$coefficients
model.coef.empl # vidi koliko redova su koef.za druge varijable (22 redova su drugi koeficijenti)
##                                       Estimate   Std. Error     t value
## (Intercept)                       1.1505558085 0.4797694252  2.39814325
## factor(Sex_1)2                   -0.2260883477 0.0741010945 -3.05107973
## factor(Educ.1)no elementary      -0.0900952185 0.2058774006 -0.43761587
## factor(Educ.1)elementary         -0.0150238957 0.1808393053 -0.08307871
## factor(Educ.1)high schl           0.3778419261 0.1819171797  2.07699969
## factor(Educ.1)college             0.5880372575 0.2171602232  2.70784976
## factor(Educ.1)university          0.6674755019 0.1972141973  3.38452054
## factor(Activ.1)0                 -0.1899942460 0.0613494889 -3.09691653
## n.employtwo                       0.3142004870 0.0563010367  5.58072294
## n.employthree and more            0.3703288824 0.1022819201  3.62066807
## factor(ncomp1)two                 0.6677930837 0.1257311860  5.31127642
## factor(ncomp1)three               1.0225816751 0.1248021574  8.19362178
## factor(ncomp1)four                1.3282648552 0.1237332954 10.73490244
## factor(ncomp1)five                1.3552052197 0.1336170423 10.14245785
## factor(ncomp1)six                 1.5426338865 0.1533920704 10.05680335
## factor(ncomp1)seven               1.8124581905 0.2117076842  8.56113559
## factor(ncomp1)eight               0.9510853967 0.3174764887  2.99576640
## factor(ncomp1)nine                1.7413763913 0.5369214711  3.24326086
## factor(ncomp1)ten                 2.6003379273 0.7955752869  3.26850013
## factor(ncomp1)11+                 2.1920015695 0.7115031854  3.08080359
## as.numeric(Age_1)                 0.0154416088 0.0140904182  1.09589429
## as.numeric(Age_1^2)              -0.0001122846 0.0001355406 -0.82842073
## factor(naziv_Opcine)B.Petrovac   -0.3776747521 0.5515335086 -0.68477209
## factor(naziv_Opcine)Banovici      1.0374490107 0.4380510255  2.36832914
## factor(naziv_Opcine)Banja Luka    0.8319755743 0.3165000527  2.62867436
## factor(naziv_Opcine)Bihac         0.7092532952 0.3502147714  2.02519526
## factor(naziv_Opcine)Bijeljina     0.0995604141 0.3194100386  0.31170096
## factor(naziv_Opcine)Bratunac      0.5256885481 0.5513728956  0.95341746
## factor(naziv_Opcine)Brcko         0.5648748698 0.3125690207  1.80720043
## factor(naziv_Opcine)Breza        -0.0250029347 0.5208487445 -0.04800421
## factor(naziv_Opcine)Brod          0.1702639176 0.4443095699  0.38321011
## factor(naziv_Opcine)Bugojno       0.5092488538 0.3617734496  1.40764574
## factor(naziv_Opcine)Busovaca      1.5139901829 0.4274176416  3.54217991
## factor(naziv_Opcine)Buzim         0.2525970322 0.5510536094  0.45838922
## factor(naziv_Opcine)C.Sarajevo    0.5672651907 0.3651561035  1.55348681
## factor(naziv_Opcine)Capljina      1.4569534717 0.4468256121  3.26067583
## factor(naziv_Opcine)Cazin         0.4934371883 0.3576541856  1.37964886
## factor(naziv_Opcine)Celic         0.2538265923 0.5516447521  0.46012690
## factor(naziv_Opcine)Celinac       0.8521213104 0.5514200728  1.54532153
## factor(naziv_Opcine)Citluk        1.6963959089 0.4395818344  3.85911286
## factor(naziv_Opcine)D.Vakuf       0.7265215510 0.3982888421  1.82410722
## factor(naziv_Opcine)Derventa      0.3851237853 0.4155416262  0.92679953
## factor(naziv_Opcine)Doboj         0.7510946953 0.3628484125  2.06999581
## factor(naziv_Opcine)Doboj-Istok   1.0621163751 0.5340125484  1.98893524
## factor(naziv_Opcine)Drvar        -0.1032950543 0.5216447472 -0.19801801
## factor(naziv_Opcine)Foca - RS     0.4941934067 0.4494445671  1.09956476
## factor(naziv_Opcine)Fojnica       1.3066618686 0.4869032229  2.68361721
## factor(naziv_Opcine)G.Vakuf       0.9023134502 0.4277386535  2.10949710
## factor(naziv_Opcine)Gacko        -0.1344265832 0.4621885348 -0.29084794
## factor(naziv_Opcine)Glamoc       -0.4467542383 0.5729997858 -0.77967610
## factor(naziv_Opcine)Gorazde       0.2938518665 0.4063191813  0.72320452
## factor(naziv_Opcine)Gracanica     0.8304466325 0.3446174155  2.40976397
## factor(naziv_Opcine)Grad Mostar   0.8545848334 0.3210954805  2.66146640
## factor(naziv_Opcine)Gradacac      1.1328374547 0.3947146916  2.87001594
## factor(naziv_Opcine)Gradiska      1.2253599075 0.4101428745  2.98764158
## factor(naziv_Opcine)Grude         0.7754122927 0.4549501344  1.70438963
## factor(naziv_Opcine)I.Ilidza     -0.1016629699 0.5219791572 -0.19476442
## factor(naziv_Opcine)Ilidza        0.7202100851 0.3698139285  1.94749313
## factor(naziv_Opcine)Ilijas        0.0054865413 0.4964606115  0.01105131
## factor(naziv_Opcine)Jajce         0.7977865588 0.4493667621  1.77535729
## factor(naziv_Opcine)K.Dubica      0.7056374870 0.3902431884  1.80819937
## factor(naziv_Opcine)Kakanj        0.3589537739 0.3475932146  1.03268349
## factor(naziv_Opcine)Kalesija      1.0474252387 0.4171121978  2.51113548
## factor(naziv_Opcine)Kiseljak      1.1095209841 0.3928253252  2.82446399
## factor(naziv_Opcine)Kladanj       0.7145528726 0.5205398938  1.37271491
## factor(naziv_Opcine)Kljuc         0.3275010481 0.4490867433  0.72926011
## factor(naziv_Opcine)Knezevo       0.3404023897 0.5080745995  0.66998506
## factor(naziv_Opcine)Konjic        0.3591983253 0.3729116288  0.96322640
## factor(naziv_Opcine)Kotor Varos   0.4801894529 0.4859631313  0.98811910
## factor(naziv_Opcine)Kresevo       1.0856281566 0.4987257789  2.17680377
## factor(naziv_Opcine)Laktasi       0.8648152611 0.3806588468  2.27189061
## factor(naziv_Opcine)Livno         0.3526909779 0.4424477868  0.79713582
## factor(naziv_Opcine)Lopare        0.7584297919 0.4197502233  1.80685977
## factor(naziv_Opcine)Lukavac       1.0099876921 0.3766167363  2.68173874
## factor(naziv_Opcine)Ljubuski      1.5881068685 0.4261134513  3.72695784
## factor(naziv_Opcine)Maglaj        0.0543513736 0.3836179484  0.14168100
## factor(naziv_Opcine)Modrica       0.4306975289 0.3971365770  1.08450733
## factor(naziv_Opcine)N.G.Sarajevo  0.8521916113 0.3224844007  2.64258243
## factor(naziv_Opcine)N.Gorazde     1.4668141927 0.5719794668  2.56445253
## factor(naziv_Opcine)N.Sarajevo    0.2987891980 0.3716898933  0.80386689
## factor(naziv_Opcine)N.Travnik     0.5789122314 0.3702453920  1.56359065
## factor(naziv_Opcine)Nevesinje     0.3347483635 0.5534635475  0.60482459
## factor(naziv_Opcine)Novi Grad    -0.0477252432 0.3722467863 -0.12820861
## factor(naziv_Opcine)Orasje        1.1081282124 0.4293638663  2.58086043
## factor(naziv_Opcine)Pale         -0.3578066802 0.4559481025 -0.78475309
## factor(naziv_Opcine)Posusje       0.7400731235 0.5200333058  1.42312639
## factor(naziv_Opcine)Prijedor      0.6675457752 0.3435768383  1.94293008
## factor(naziv_Opcine)Prnjavor      0.8499689929 0.3914053696  2.17158235
## factor(naziv_Opcine)Prozor        0.5571051515 0.5552704132  1.00330422
## factor(naziv_Opcine)Ribnik        0.2680127055 0.5098591770  0.52566026
## factor(naziv_Opcine)Rogatica     -0.3667611975 0.5085011443 -0.72125934
## factor(naziv_Opcine)Rudo          0.5131764943 0.4872561919  1.05319646
## factor(naziv_Opcine)S.Brijeg      1.2726688650 0.3925248174  3.24226344
## factor(naziv_Opcine)S.G.Sarajevo  0.6968394580 0.3935049404  1.77085314
## factor(naziv_Opcine)Samac         0.5303376394 0.3676873259  1.44236040
## factor(naziv_Opcine)Sanski Most   0.6261048988 0.3471940049  1.80332866
## factor(naziv_Opcine)Sokolac      -0.3603451732 0.5535478714 -0.65097382
## factor(naziv_Opcine)Srbac         0.6694379268 0.4617654401  1.44973588
## factor(naziv_Opcine)Srebrenik     0.0478549684 0.3507034179  0.13645424
## factor(naziv_Opcine)Stolac        1.3577008610 0.5516831763  2.46101552
## factor(naziv_Opcine)Tesanj        0.3373002234 0.3585179994  0.94081810
## factor(naziv_Opcine)Teslic        0.0425346864 0.4097787616  0.10379915
## factor(naziv_Opcine)Tomislavgrad  1.3567828594 0.4633198948  2.92839326
## factor(naziv_Opcine)Travnik       1.0287699728 0.3349071631  3.07180642
## factor(naziv_Opcine)Trebinje      0.0978233607 0.4014138408  0.24369703
## factor(naziv_Opcine)Tuzla         0.7319490237 0.3318877155  2.20541162
## factor(naziv_Opcine)Ugljevik      0.7206744182 0.4765402200  1.51230555
## factor(naziv_Opcine)V.Kladusa     0.9439790403 0.3710007186  2.54441297
## factor(naziv_Opcine)Visegrad     -0.6144386362 0.5364254662 -1.14543152
## factor(naziv_Opcine)Visoko        0.7017305574 0.3683522453  1.90505302
## factor(naziv_Opcine)Vitez         1.0624149911 0.3747040935  2.83534397
## factor(naziv_Opcine)Vlasenica     0.3591126544 0.4865949550  0.73801146
## factor(naziv_Opcine)Vogosca       0.9660204371 0.4554037597  2.12123949
## factor(naziv_Opcine)Zavidovici   -0.1761700104 0.3632730408 -0.48495206
## factor(naziv_Opcine)Zenica       -0.0644010467 0.3214623901 -0.20033773
## factor(naziv_Opcine)Zepce         0.3224940400 0.5740909090  0.56174734
## factor(naziv_Opcine)Zivinice      1.0577272398 0.3445152114  3.07019024
## factor(naziv_Opcine)Zvornik       0.8324091214 0.3632602227  2.29149538
##                                      Pr(>|t|)
## (Intercept)                      1.652422e-02
## factor(Sex_1)2                   2.295239e-03
## factor(Educ.1)no elementary      6.616885e-01
## factor(Educ.1)elementary         9.337931e-01
## factor(Educ.1)high schl          3.786562e-02
## factor(Educ.1)college            6.801028e-03
## factor(Educ.1)university         7.199281e-04
## factor(Activ.1)0                 1.969072e-03
## n.employtwo                      2.554771e-08
## n.employthree and more           2.975046e-04
## factor(ncomp1)two                1.148152e-07
## factor(ncomp1)three              3.382240e-16
## factor(ncomp1)four               1.605415e-26
## factor(ncomp1)five               6.971287e-24
## factor(ncomp1)six                1.633584e-23
## factor(ncomp1)seven              1.574242e-17
## factor(ncomp1)eight              2.754446e-03
## factor(ncomp1)nine               1.191462e-03
## factor(ncomp1)ten                1.090383e-03
## factor(ncomp1)11+                2.078537e-03
## as.numeric(Age_1)                2.731914e-01
## as.numeric(Age_1^2)              4.074820e-01
## factor(naziv_Opcine)B.Petrovac   4.935276e-01
## factor(naziv_Opcine)Banovici     1.791617e-02
## factor(naziv_Opcine)Banja Luka   8.604801e-03
## factor(naziv_Opcine)Bihac        4.291397e-02
## factor(naziv_Opcine)Bijeljina    7.552841e-01
## factor(naziv_Opcine)Bratunac     3.404365e-01
## factor(naziv_Opcine)Brcko        7.080655e-02
## factor(naziv_Opcine)Breza        9.617153e-01
## factor(naziv_Opcine)Brod         7.015845e-01
## factor(naziv_Opcine)Bugojno      1.593141e-01
## factor(naziv_Opcine)Busovaca     4.013885e-04
## factor(naziv_Opcine)Buzim        6.466979e-01
## factor(naziv_Opcine)C.Sarajevo   1.203864e-01
## factor(naziv_Opcine)Capljina     1.120836e-03
## factor(naziv_Opcine)Cazin        1.677723e-01
## factor(naziv_Opcine)Celic        6.454503e-01
## factor(naziv_Opcine)Celinac      1.223481e-01
## factor(naziv_Opcine)Citluk       1.156038e-04
## factor(naziv_Opcine)D.Vakuf      6.821085e-02
## factor(naziv_Opcine)Derventa     3.540869e-01
## factor(naziv_Opcine)Doboj        3.851713e-02
## factor(naziv_Opcine)Doboj-Istok  4.677674e-02
## factor(naziv_Opcine)Drvar        8.430411e-01
## factor(naziv_Opcine)Foca - RS    2.715883e-01
## factor(naziv_Opcine)Fojnica      7.313201e-03
## factor(naziv_Opcine)G.Vakuf      3.496401e-02
## factor(naziv_Opcine)Gacko        7.711828e-01
## factor(naziv_Opcine)Glamoc       4.356279e-01
## factor(naziv_Opcine)Gorazde      4.695968e-01
## factor(naziv_Opcine)Gracanica    1.600797e-02
## factor(naziv_Opcine)Grad Mostar  7.811383e-03
## factor(naziv_Opcine)Gradacac     4.126166e-03
## factor(naziv_Opcine)Gradiska     2.828560e-03
## factor(naziv_Opcine)Grude        8.838641e-02
## factor(naziv_Opcine)I.Ilidza     8.455873e-01
## factor(naziv_Opcine)Ilidza       5.154591e-02
## factor(naziv_Opcine)Ilijas       9.911831e-01
## factor(naziv_Opcine)Jajce        7.591535e-02
## factor(naziv_Opcine)K.Dubica     7.065096e-02
## factor(naziv_Opcine)Kakanj       3.018148e-01
## factor(naziv_Opcine)Kalesija     1.207368e-02
## factor(naziv_Opcine)Kiseljak     4.759556e-03
## factor(naziv_Opcine)Kladanj      1.699184e-01
## factor(naziv_Opcine)Kljuc        4.658855e-01
## factor(naziv_Opcine)Knezevo      5.029062e-01
## factor(naziv_Opcine)Konjic       3.354925e-01
## factor(naziv_Opcine)Kotor Varos  3.231544e-01
## factor(naziv_Opcine)Kresevo      2.955382e-02
## factor(naziv_Opcine)Laktasi      2.314628e-02
## factor(naziv_Opcine)Livno        4.254197e-01
## factor(naziv_Opcine)Lopare       7.085968e-02
## factor(naziv_Opcine)Lukavac      7.354314e-03
## factor(naziv_Opcine)Ljubuski     1.964981e-04
## factor(naziv_Opcine)Maglaj       8.873392e-01
## factor(naziv_Opcine)Modrica      2.782056e-01
## factor(naziv_Opcine)N.G.Sarajevo 8.259884e-03
## factor(naziv_Opcine)N.Gorazde    1.037026e-02
## factor(naziv_Opcine)N.Sarajevo   4.215219e-01
## factor(naziv_Opcine)N.Travnik    1.179933e-01
## factor(naziv_Opcine)Nevesinje    5.453300e-01
## factor(naziv_Opcine)Novi Grad    8.979904e-01
## factor(naziv_Opcine)Orasje       9.890939e-03
## factor(naziv_Opcine)Pale         4.326451e-01
## factor(naziv_Opcine)Posusje      1.547779e-01
## factor(naziv_Opcine)Prijedor     5.209507e-02
## factor(naziv_Opcine)Prnjavor     2.994608e-02
## factor(naziv_Opcine)Prozor       3.157751e-01
## factor(naziv_Opcine)Ribnik       5.991536e-01
## factor(naziv_Opcine)Rogatica     4.707924e-01
## factor(naziv_Opcine)Rudo         2.923149e-01
## factor(naziv_Opcine)S.Brijeg     1.195629e-03
## factor(naziv_Opcine)S.G.Sarajevo 7.666169e-02
## factor(naziv_Opcine)Samac        1.492795e-01
## factor(naziv_Opcine)Sanski Most  7.141225e-02
## factor(naziv_Opcine)Sokolac      5.151010e-01
## factor(naziv_Opcine)Srbac        1.472110e-01
## factor(naziv_Opcine)Srebrenik    8.914691e-01
## factor(naziv_Opcine)Stolac       1.389661e-02
## factor(naziv_Opcine)Tesanj       3.468552e-01
## factor(naziv_Opcine)Teslic       9.173340e-01
## factor(naziv_Opcine)Tomislavgrad 3.426530e-03
## factor(naziv_Opcine)Travnik      2.142063e-03
## factor(naziv_Opcine)Trebinje     8.074780e-01
## factor(naziv_Opcine)Tuzla        2.748222e-02
## factor(naziv_Opcine)Ugljevik     1.305356e-01
## factor(naziv_Opcine)V.Kladusa    1.098364e-02
## factor(naziv_Opcine)Visegrad     2.520994e-01
## factor(naziv_Opcine)Visoko       5.684522e-02
## factor(naziv_Opcine)Vitez        4.600747e-03
## factor(naziv_Opcine)Vlasenica    4.605510e-01
## factor(naziv_Opcine)Vogosca      3.396333e-02
## factor(naziv_Opcine)Zavidovici   6.277371e-01
## factor(naziv_Opcine)Zenica       8.412267e-01
## factor(naziv_Opcine)Zepce        5.743198e-01
## factor(naziv_Opcine)Zivinice     2.153661e-03
## factor(naziv_Opcine)Zvornik      2.198680e-02
#Ovdje je B.Krupa referentna opstina, B.Grahovo sam brisala, provjeri koja ostina je abecedno po redu
sort(unique(hbs.transport.drop.1$naziv_Opcine)) #B.Krupa je referentna
##  [1] "B.Krupa"      "B.Petrovac"   "Banovici"     "Banja Luka"   "Bihac"       
##  [6] "Bijeljina"    "Bratunac"     "Brcko"        "Breza"        "Brod"        
## [11] "Bugojno"      "Busovaca"     "Buzim"        "C.Sarajevo"   "Capljina"    
## [16] "Cazin"        "Celic"        "Celinac"      "Citluk"       "D.Vakuf"     
## [21] "Derventa"     "Doboj"        "Doboj-Istok"  "Drvar"        "Foca - RS"   
## [26] "Fojnica"      "G.Vakuf"      "Gacko"        "Glamoc"       "Gorazde"     
## [31] "Gracanica"    "Grad Mostar"  "Gradacac"     "Gradiska"     "Grude"       
## [36] "I.Ilidza"     "Ilidza"       "Ilijas"       "Jajce"        "K.Dubica"    
## [41] "Kakanj"       "Kalesija"     "Kiseljak"     "Kladanj"      "Kljuc"       
## [46] "Knezevo"      "Konjic"       "Kotor Varos"  "Kresevo"      "Laktasi"     
## [51] "Livno"        "Lopare"       "Lukavac"      "Ljubuski"     "Maglaj"      
## [56] "Modrica"      "N.G.Sarajevo" "N.Gorazde"    "N.Sarajevo"   "N.Travnik"   
## [61] "Nevesinje"    "Novi Grad"    "Orasje"       "Pale"         "Posusje"     
## [66] "Prijedor"     "Prnjavor"     "Prozor"       "Ribnik"       "Rogatica"    
## [71] "Rudo"         "S.Brijeg"     "S.G.Sarajevo" "Samac"        "Sanski Most" 
## [76] "Sokolac"      "Srbac"        "Srebrenik"    "Stolac"       "Tesanj"      
## [81] "Teslic"       "Tomislavgrad" "Travnik"      "Trebinje"     "Tuzla"       
## [86] "Ugljevik"     "V.Kladusa"    "Visegrad"     "Visoko"       "Vitez"       
## [91] "Vlasenica"    "Vogosca"      "Zavidovici"   "Zenica"       "Zepce"       
## [96] "Zivinice"     "Zvornik"
model.coef.empl[,c("Estimate","Pr(>|t|)")]
##                                       Estimate     Pr(>|t|)
## (Intercept)                       1.1505558085 1.652422e-02
## factor(Sex_1)2                   -0.2260883477 2.295239e-03
## factor(Educ.1)no elementary      -0.0900952185 6.616885e-01
## factor(Educ.1)elementary         -0.0150238957 9.337931e-01
## factor(Educ.1)high schl           0.3778419261 3.786562e-02
## factor(Educ.1)college             0.5880372575 6.801028e-03
## factor(Educ.1)university          0.6674755019 7.199281e-04
## factor(Activ.1)0                 -0.1899942460 1.969072e-03
## n.employtwo                       0.3142004870 2.554771e-08
## n.employthree and more            0.3703288824 2.975046e-04
## factor(ncomp1)two                 0.6677930837 1.148152e-07
## factor(ncomp1)three               1.0225816751 3.382240e-16
## factor(ncomp1)four                1.3282648552 1.605415e-26
## factor(ncomp1)five                1.3552052197 6.971287e-24
## factor(ncomp1)six                 1.5426338865 1.633584e-23
## factor(ncomp1)seven               1.8124581905 1.574242e-17
## factor(ncomp1)eight               0.9510853967 2.754446e-03
## factor(ncomp1)nine                1.7413763913 1.191462e-03
## factor(ncomp1)ten                 2.6003379273 1.090383e-03
## factor(ncomp1)11+                 2.1920015695 2.078537e-03
## as.numeric(Age_1)                 0.0154416088 2.731914e-01
## as.numeric(Age_1^2)              -0.0001122846 4.074820e-01
## factor(naziv_Opcine)B.Petrovac   -0.3776747521 4.935276e-01
## factor(naziv_Opcine)Banovici      1.0374490107 1.791617e-02
## factor(naziv_Opcine)Banja Luka    0.8319755743 8.604801e-03
## factor(naziv_Opcine)Bihac         0.7092532952 4.291397e-02
## factor(naziv_Opcine)Bijeljina     0.0995604141 7.552841e-01
## factor(naziv_Opcine)Bratunac      0.5256885481 3.404365e-01
## factor(naziv_Opcine)Brcko         0.5648748698 7.080655e-02
## factor(naziv_Opcine)Breza        -0.0250029347 9.617153e-01
## factor(naziv_Opcine)Brod          0.1702639176 7.015845e-01
## factor(naziv_Opcine)Bugojno       0.5092488538 1.593141e-01
## factor(naziv_Opcine)Busovaca      1.5139901829 4.013885e-04
## factor(naziv_Opcine)Buzim         0.2525970322 6.466979e-01
## factor(naziv_Opcine)C.Sarajevo    0.5672651907 1.203864e-01
## factor(naziv_Opcine)Capljina      1.4569534717 1.120836e-03
## factor(naziv_Opcine)Cazin         0.4934371883 1.677723e-01
## factor(naziv_Opcine)Celic         0.2538265923 6.454503e-01
## factor(naziv_Opcine)Celinac       0.8521213104 1.223481e-01
## factor(naziv_Opcine)Citluk        1.6963959089 1.156038e-04
## factor(naziv_Opcine)D.Vakuf       0.7265215510 6.821085e-02
## factor(naziv_Opcine)Derventa      0.3851237853 3.540869e-01
## factor(naziv_Opcine)Doboj         0.7510946953 3.851713e-02
## factor(naziv_Opcine)Doboj-Istok   1.0621163751 4.677674e-02
## factor(naziv_Opcine)Drvar        -0.1032950543 8.430411e-01
## factor(naziv_Opcine)Foca - RS     0.4941934067 2.715883e-01
## factor(naziv_Opcine)Fojnica       1.3066618686 7.313201e-03
## factor(naziv_Opcine)G.Vakuf       0.9023134502 3.496401e-02
## factor(naziv_Opcine)Gacko        -0.1344265832 7.711828e-01
## factor(naziv_Opcine)Glamoc       -0.4467542383 4.356279e-01
## factor(naziv_Opcine)Gorazde       0.2938518665 4.695968e-01
## factor(naziv_Opcine)Gracanica     0.8304466325 1.600797e-02
## factor(naziv_Opcine)Grad Mostar   0.8545848334 7.811383e-03
## factor(naziv_Opcine)Gradacac      1.1328374547 4.126166e-03
## factor(naziv_Opcine)Gradiska      1.2253599075 2.828560e-03
## factor(naziv_Opcine)Grude         0.7754122927 8.838641e-02
## factor(naziv_Opcine)I.Ilidza     -0.1016629699 8.455873e-01
## factor(naziv_Opcine)Ilidza        0.7202100851 5.154591e-02
## factor(naziv_Opcine)Ilijas        0.0054865413 9.911831e-01
## factor(naziv_Opcine)Jajce         0.7977865588 7.591535e-02
## factor(naziv_Opcine)K.Dubica      0.7056374870 7.065096e-02
## factor(naziv_Opcine)Kakanj        0.3589537739 3.018148e-01
## factor(naziv_Opcine)Kalesija      1.0474252387 1.207368e-02
## factor(naziv_Opcine)Kiseljak      1.1095209841 4.759556e-03
## factor(naziv_Opcine)Kladanj       0.7145528726 1.699184e-01
## factor(naziv_Opcine)Kljuc         0.3275010481 4.658855e-01
## factor(naziv_Opcine)Knezevo       0.3404023897 5.029062e-01
## factor(naziv_Opcine)Konjic        0.3591983253 3.354925e-01
## factor(naziv_Opcine)Kotor Varos   0.4801894529 3.231544e-01
## factor(naziv_Opcine)Kresevo       1.0856281566 2.955382e-02
## factor(naziv_Opcine)Laktasi       0.8648152611 2.314628e-02
## factor(naziv_Opcine)Livno         0.3526909779 4.254197e-01
## factor(naziv_Opcine)Lopare        0.7584297919 7.085968e-02
## factor(naziv_Opcine)Lukavac       1.0099876921 7.354314e-03
## factor(naziv_Opcine)Ljubuski      1.5881068685 1.964981e-04
## factor(naziv_Opcine)Maglaj        0.0543513736 8.873392e-01
## factor(naziv_Opcine)Modrica       0.4306975289 2.782056e-01
## factor(naziv_Opcine)N.G.Sarajevo  0.8521916113 8.259884e-03
## factor(naziv_Opcine)N.Gorazde     1.4668141927 1.037026e-02
## factor(naziv_Opcine)N.Sarajevo    0.2987891980 4.215219e-01
## factor(naziv_Opcine)N.Travnik     0.5789122314 1.179933e-01
## factor(naziv_Opcine)Nevesinje     0.3347483635 5.453300e-01
## factor(naziv_Opcine)Novi Grad    -0.0477252432 8.979904e-01
## factor(naziv_Opcine)Orasje        1.1081282124 9.890939e-03
## factor(naziv_Opcine)Pale         -0.3578066802 4.326451e-01
## factor(naziv_Opcine)Posusje       0.7400731235 1.547779e-01
## factor(naziv_Opcine)Prijedor      0.6675457752 5.209507e-02
## factor(naziv_Opcine)Prnjavor      0.8499689929 2.994608e-02
## factor(naziv_Opcine)Prozor        0.5571051515 3.157751e-01
## factor(naziv_Opcine)Ribnik        0.2680127055 5.991536e-01
## factor(naziv_Opcine)Rogatica     -0.3667611975 4.707924e-01
## factor(naziv_Opcine)Rudo          0.5131764943 2.923149e-01
## factor(naziv_Opcine)S.Brijeg      1.2726688650 1.195629e-03
## factor(naziv_Opcine)S.G.Sarajevo  0.6968394580 7.666169e-02
## factor(naziv_Opcine)Samac         0.5303376394 1.492795e-01
## factor(naziv_Opcine)Sanski Most   0.6261048988 7.141225e-02
## factor(naziv_Opcine)Sokolac      -0.3603451732 5.151010e-01
## factor(naziv_Opcine)Srbac         0.6694379268 1.472110e-01
## factor(naziv_Opcine)Srebrenik     0.0478549684 8.914691e-01
## factor(naziv_Opcine)Stolac        1.3577008610 1.389661e-02
## factor(naziv_Opcine)Tesanj        0.3373002234 3.468552e-01
## factor(naziv_Opcine)Teslic        0.0425346864 9.173340e-01
## factor(naziv_Opcine)Tomislavgrad  1.3567828594 3.426530e-03
## factor(naziv_Opcine)Travnik       1.0287699728 2.142063e-03
## factor(naziv_Opcine)Trebinje      0.0978233607 8.074780e-01
## factor(naziv_Opcine)Tuzla         0.7319490237 2.748222e-02
## factor(naziv_Opcine)Ugljevik      0.7206744182 1.305356e-01
## factor(naziv_Opcine)V.Kladusa     0.9439790403 1.098364e-02
## factor(naziv_Opcine)Visegrad     -0.6144386362 2.520994e-01
## factor(naziv_Opcine)Visoko        0.7017305574 5.684522e-02
## factor(naziv_Opcine)Vitez         1.0624149911 4.600747e-03
## factor(naziv_Opcine)Vlasenica     0.3591126544 4.605510e-01
## factor(naziv_Opcine)Vogosca       0.9660204371 3.396333e-02
## factor(naziv_Opcine)Zavidovici   -0.1761700104 6.277371e-01
## factor(naziv_Opcine)Zenica       -0.0644010467 8.412267e-01
## factor(naziv_Opcine)Zepce         0.3224940400 5.743198e-01
## factor(naziv_Opcine)Zivinice      1.0577272398 2.153661e-03
## factor(naziv_Opcine)Zvornik       0.8324091214 2.198680e-02
model.coef.empl <- model.coef.empl #provjeri koliko je drugih unosa
model.coef.empl <- as.data.frame.array(model.coef.empl[-c(1:22),]) # da bude dataframe a ne matrix i da mi brise prvih 20 redova koji su drugi koeficijenti.24.11.2024. OVO SU TRAZENI KOEFICIJENTI
Munic <- rownames(model.coef.empl)
model.coef.empl$Munic <- Munic
dim(model.coef.empl) #da vidim koliko redova 
## [1] 96  5
rownames(model.coef.empl) <- 1:96 #nedostaje B.Krupa koje je 0
head(model.coef.empl)
##      Estimate Std. Error    t value    Pr(>|t|)                          Munic
## 1 -0.37767475  0.5515335 -0.6847721 0.493527646 factor(naziv_Opcine)B.Petrovac
## 2  1.03744901  0.4380510  2.3683291 0.017916166   factor(naziv_Opcine)Banovici
## 3  0.83197557  0.3165001  2.6286744 0.008604801 factor(naziv_Opcine)Banja Luka
## 4  0.70925330  0.3502148  2.0251953 0.042913971      factor(naziv_Opcine)Bihac
## 5  0.09956041  0.3194100  0.3117010 0.755284137  factor(naziv_Opcine)Bijeljina
## 6  0.52568855  0.5513729  0.9534175 0.340436524   factor(naziv_Opcine)Bratunac

Make a new variable with municipal names without factor(Munic)

Munic1 <- sapply(strsplit(Munic, split=')', fixed=TRUE), function(x) (x[2]))
Munic1
##  [1] "B.Petrovac"   "Banovici"     "Banja Luka"   "Bihac"        "Bijeljina"   
##  [6] "Bratunac"     "Brcko"        "Breza"        "Brod"         "Bugojno"     
## [11] "Busovaca"     "Buzim"        "C.Sarajevo"   "Capljina"     "Cazin"       
## [16] "Celic"        "Celinac"      "Citluk"       "D.Vakuf"      "Derventa"    
## [21] "Doboj"        "Doboj-Istok"  "Drvar"        "Foca - RS"    "Fojnica"     
## [26] "G.Vakuf"      "Gacko"        "Glamoc"       "Gorazde"      "Gracanica"   
## [31] "Grad Mostar"  "Gradacac"     "Gradiska"     "Grude"        "I.Ilidza"    
## [36] "Ilidza"       "Ilijas"       "Jajce"        "K.Dubica"     "Kakanj"      
## [41] "Kalesija"     "Kiseljak"     "Kladanj"      "Kljuc"        "Knezevo"     
## [46] "Konjic"       "Kotor Varos"  "Kresevo"      "Laktasi"      "Livno"       
## [51] "Lopare"       "Lukavac"      "Ljubuski"     "Maglaj"       "Modrica"     
## [56] "N.G.Sarajevo" "N.Gorazde"    "N.Sarajevo"   "N.Travnik"    "Nevesinje"   
## [61] "Novi Grad"    "Orasje"       "Pale"         "Posusje"      "Prijedor"    
## [66] "Prnjavor"     "Prozor"       "Ribnik"       "Rogatica"     "Rudo"        
## [71] "S.Brijeg"     "S.G.Sarajevo" "Samac"        "Sanski Most"  "Sokolac"     
## [76] "Srbac"        "Srebrenik"    "Stolac"       "Tesanj"       "Teslic"      
## [81] "Tomislavgrad" "Travnik"      "Trebinje"     "Tuzla"        "Ugljevik"    
## [86] "V.Kladusa"    "Visegrad"     "Visoko"       "Vitez"        "Vlasenica"   
## [91] "Vogosca"      "Zavidovici"   "Zenica"       "Zepce"        "Zivinice"    
## [96] "Zvornik"
model.coef.empl$Munic1 <- Munic1

add B.Krupa to dataframe

model.coef.empl[nrow(model.coef.empl) + 1,] = c(0, NA, NA, NA,"B.Krupa","B.Krupa" )
model.coef.empl$Estimate <- as.numeric(model.coef.empl$Estimate)
top10.m.empl <- model.coef.empl  %>%
    dplyr::select(Estimate, Munic1) %>%
    arrange (desc(Estimate))%>%
    head(10) #top ten municipalities
top10.m.empl
##    Estimate       Munic1
## 1  1.696396       Citluk
## 2  1.588107     Ljubuski
## 3  1.513990     Busovaca
## 4  1.466814    N.Gorazde
## 5  1.456953     Capljina
## 6  1.357701       Stolac
## 7  1.356783 Tomislavgrad
## 8  1.306662      Fojnica
## 9  1.272669     S.Brijeg
## 10 1.225360     Gradiska

Extracting the coefficients from the second best model p2 the compareble model

Spasiti u excelu koef za winning model

library(openxlsx)
wb = createWorkbook()

addWorksheet(wb, "estimates.WINNING.MODEL_p2.age") #ovo je naziv sheeta

writeData(wb,"estimates.WINNING.MODEL_p2.age", model.coef.empl)

saveWorkbook(wb, "estimates.transport.hbs.cost.empl.24.11.2024.xlsx", overwrite = T)
## Warning in file.create(to[okay]): cannot create file
## 'estimates.transport.hbs.cost.empl.24.11.2024.xlsx', reason 'Permission denied'

Dummy variables.. summary and sd

# Load necessary libraries
library(fastDummies)
library(dplyr)

#ncomp1

# Step 1: Create dummy variables for ncomp1
hbs.transport.drop.2 <- hbs.transport.drop.1 %>%
  mutate(ncomp1 = as.factor(ncomp1)) %>%
  dummy_cols(select_columns = "ncomp1", remove_selected_columns = TRUE)

# Step 2: Get the names of the dummy variables
dummy_cols <- grep("^ncomp1_", names(hbs.transport.drop.2), value = TRUE)

# Step 3: Calculate descriptive statistics for each dummy variable
stats_list <- lapply(dummy_cols, function(dummy_col) {
  data.frame(
    Dummy = dummy_col,
    Min = min(hbs.transport.drop.2[[dummy_col]], na.rm = TRUE),
    Max = max(hbs.transport.drop.2[[dummy_col]], na.rm = TRUE),
    Mean = mean(hbs.transport.drop.2[[dummy_col]], na.rm = TRUE),
    SD = sd(hbs.transport.drop.2[[dummy_col]], na.rm = TRUE)
  )
})

# Step 4: Combine results into a single data frame
stats_df <- bind_rows(stats_list)

# View the results
head(stats_df,11)
##           Dummy Min Max         Mean         SD
## 1    ncomp1_one   0   1 0.0517578125 0.22156472
## 2    ncomp1_two   0   1 0.1645507812 0.37081989
## 3  ncomp1_three   0   1 0.2390136719 0.42653318
## 4   ncomp1_four   0   1 0.3044433594 0.46022746
## 5   ncomp1_five   0   1 0.1435546875 0.35068043
## 6    ncomp1_six   0   1 0.0651855469 0.24688311
## 7  ncomp1_seven   0   1 0.0200195312 0.14008405
## 8  ncomp1_eight   0   1 0.0070800781 0.08385504
## 9   ncomp1_nine   0   1 0.0021972656 0.04682919
## 10   ncomp1_ten   0   1 0.0009765625 0.03123855
## 11   ncomp1_11+   0   1 0.0012207031 0.03492149

level of edu

library(Hmisc)
describe(hbs.transport.drop.1$Educ.1)
## hbs.transport.drop.1$Educ.1 
##        n  missing distinct 
##     4096        0        6 
##                                                                   
## Value       no education no elementary    elementary     high schl
## Frequency            103           163           744          2531
## Proportion         0.025         0.040         0.182         0.618
##                                       
## Value            college    university
## Frequency            157           398
## Proportion         0.038         0.097
# Step 1: Create dummy variables for Educ.1
hbs.transport.drop.2 <- hbs.transport.drop.1 %>%
  mutate(Educ.1 = as.factor(Educ.1)) %>%
  dummy_cols(select_columns = "Educ.1", remove_selected_columns = TRUE)

# Step 2: Get the names of the dummy variables for Educ.1
educ_dummy_cols <- grep("^Educ.1_", names(hbs.transport.drop.2), value = TRUE)

# Step 3: Calculate descriptive statistics for each dummy variable
educ_stats_list <- lapply(educ_dummy_cols, function(dummy_col) {
  data.frame(
    Dummy = dummy_col,
    Min = min(hbs.transport.drop.2[[dummy_col]], na.rm = TRUE),
    Max = max(hbs.transport.drop.2[[dummy_col]], na.rm = TRUE),
    Mean = mean(hbs.transport.drop.2[[dummy_col]], na.rm = TRUE),
    SD = sd(hbs.transport.drop.2[[dummy_col]], na.rm = TRUE)
  )
})

# Step 4: Combine results into a single data frame
educ_stats_df <- bind_rows(educ_stats_list)

# View the results
print(educ_stats_df)
##                  Dummy Min Max       Mean        SD
## 1  Educ.1_no education   0   1 0.02514648 0.1565890
## 2 Educ.1_no elementary   0   1 0.03979492 0.1955009
## 3    Educ.1_elementary   0   1 0.18164062 0.3855951
## 4     Educ.1_high schl   0   1 0.61791992 0.4859553
## 5       Educ.1_college   0   1 0.03833008 0.1920153
## 6    Educ.1_university   0   1 0.09716797 0.2962225

n.employ

describe(hbs.transport.drop.1$n.employ)
## hbs.transport.drop.1$n.employ 
##        n  missing distinct 
##     4096        0        3 
##                                                        
## Value                 one            two three and more
## Frequency            2448           1341            307
## Proportion          0.598          0.327          0.075
# Step 1: Create dummy variables for n.employ
hbs.transport.drop.1 <- hbs.transport.drop.1 %>%
  mutate(n.employ = as.factor(n.employ)) %>%
  dummy_cols(select_columns = "n.employ", remove_selected_columns = TRUE)

# Step 2: Get the names of the dummy variables for n.employ
n_employ_dummy_cols <- grep("^n.employ_", names(hbs.transport.drop.1), value = TRUE)

# Step 3: Calculate descriptive statistics for each dummy variable
n_employ_stats_list <- lapply(n_employ_dummy_cols, function(dummy_col) {
  data.frame(
    Dummy = dummy_col,
    Min = min(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE),
    Max = max(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE),
    Mean = mean(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE),
    SD = sd(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE)
  )
})

# Step 4: Combine results into a single data frame
n_employ_stats_df <- bind_rows(n_employ_stats_list)

# View the results
print(n_employ_stats_df)
##                     Dummy Min Max       Mean        SD
## 1            n.employ_one   0   1 0.59765625 0.4904304
## 2            n.employ_two   0   1 0.32739258 0.4693191
## 3 n.employ_three and more   0   1 0.07495117 0.2633447

Activ.1

describe(hbs.transport.drop.1$Activ.1)
## hbs.transport.drop.1$Activ.1 
##        n  missing distinct 
##     4096        0        2 
##                       
## Value          1     0
## Frequency   2575  1521
## Proportion 0.629 0.371
# Step 1: Create dummy variables for Activ.1
hbs.transport.drop.1 <- hbs.transport.drop.1 %>%
  mutate(Activ.1 = as.factor(Activ.1)) %>%
  dummy_cols(select_columns = "Activ.1", remove_selected_columns = TRUE)

# Step 2: Get the names of the dummy variables for Activ.1
activ_dummy_cols <- grep("^Activ.1_", names(hbs.transport.drop.1), value = TRUE)

# Step 3: Calculate descriptive statistics for each dummy variable
activ_stats_list <- lapply(activ_dummy_cols, function(dummy_col) {
  data.frame(
    Dummy = dummy_col,
    Min = min(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE),
    Max = max(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE),
    Mean = mean(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE),
    SD = sd(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE)
  )
})

# Step 4: Combine results into a single data frame
activ_stats_df <- bind_rows(activ_stats_list)

# View the results
print(activ_stats_df)
##       Dummy Min Max      Mean        SD
## 1 Activ.1_1   0   1 0.6286621 0.4832216
## 2 Activ.1_0   0   1 0.3713379 0.4832216

Sex_1

describe(hbs.transport.drop.1$Sex_1)
## hbs.transport.drop.1$Sex_1 : Sex_1  Format:F1.0 
##        n  missing distinct     Info     Mean 
##     4096        0        2    0.387    1.152 
##                       
## Value          1     2
## Frequency   3473   623
## Proportion 0.848 0.152
# Step 1: Create dummy variables for Sex_1
hbs.transport.drop.1 <- hbs.transport.drop.1 %>%
  mutate(Sex_1 = as.factor(Sex_1)) %>%
  dummy_cols(select_columns = "Sex_1", remove_selected_columns = TRUE)

# Step 2: Get the names of the dummy variables for Sex_1
sex_dummy_cols <- grep("^Sex_1_", names(hbs.transport.drop.1), value = TRUE)

# Step 3: Calculate descriptive statistics for each dummy variable
sex_stats_list <- lapply(sex_dummy_cols, function(dummy_col) {
  data.frame(
    Dummy = dummy_col,
    Min = min(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE),
    Max = max(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE),
    Mean = mean(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE),
    SD = sd(hbs.transport.drop.1[[dummy_col]], na.rm = TRUE)
  )
})

# Step 4: Combine results into a single data frame
sex_stats_df <- bind_rows(sex_stats_list)

# View the results
print(sex_stats_df)
##     Dummy Min Max      Mean        SD
## 1 Sex_1_1   0   1 0.8479004 0.3591613
## 2 Sex_1_2   0   1 0.1520996 0.3591613
summary (hbs.transport.drop.1$Age_1)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   21.00   43.75   52.00   51.62   59.00   95.00

The age variables in the regression (as.numeric(Age_1) and as.numeric(Age_1^2)) represent a quadratic relationship between the age of the head of household and transport expenditure. In a quadratic model, the relationship can be described as a parabola, with the coefficients determining whether the parabola opens upwards (minimum) or downwards (maximum).

Step-by-Step Interpretation:

  1. Coefficients of Age Variables:

    • as.numeric(Age_1) (linear term): \(\beta_1 = 0.0154\)
    • as.numeric(Age_1^2) (quadratic term): \(\beta_2 = -0.0001123\)

    The negative sign of the quadratic term (\(\beta_2\)) indicates that the parabola opens downwards, meaning the relationship has a peak (maximum transport expenditure) at a certain age.

  2. Finding the Age at Maximum Expenditure: The age at which transport expenditure is highest can be calculated using the formula for the vertex of a parabola:
    \[ \text{Age at maximum} = -\frac{\beta_1}{2 \cdot \beta_2} \]

    Substituting the values:
    \[ \text{Age at maximum} = -\frac{0.0154}{2 \cdot (-0.0001123)} = \frac{0.0154}{0.0002246} \approx 68.6 \]

Interpretation:

The transport expenditure is highest when the head of household is approximately 69 years old.

Additional Note:

  • While the regression includes age, neither as.numeric(Age_1) nor as.numeric(Age_1^2) is statistically significant (p-values: 0.273 and 0.407, respectively). This means the effect of age on transport expenditure may not be reliable in this model. However, the calculated peak age provides a descriptive insight.