## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## # A tibble: 6 × 4
## country year cases population
## <chr> <dbl> <dbl> <dbl>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
## # A tibble: 12 × 4
## country year type count
## <chr> <dbl> <chr> <dbl>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583
## # A tibble: 6 × 3
## country year rate
## <chr> <dbl> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
## # A tibble: 6 × 5
## country year cases population rate
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Afghanistan 1999 745 19987071 0.373
## 2 Afghanistan 2000 2666 20595360 1.29
## 3 Brazil 1999 37737 172006362 2.19
## 4 Brazil 2000 80488 174504898 4.61
## 5 China 1999 212258 1272915272 1.67
## 6 China 2000 213766 1280428583 1.67
## # A tibble: 2 × 2
## year total_cases
## <dbl> <dbl>
## 1 1999 250740
## 2 2000 296920
ggplot(table1, aes(x = year, y = cases)) +
geom_line(aes(group = country), color = "grey50") +
geom_point(aes(color = country, shape = country)) +
scale_x_continuous(breaks = c(1999, 2000))
### Exercises
For table1, it has 4 variables. Country, year, cases and population.
For table2, it also has 4 variables. Country, year, type and count. It has 4 observations for each country.
For table3, this is split into 3 variables. Country, year and rate and has two observations for each nation.I would group the dataset by year and then use the mutate function to get the values for cases count and population count. In that function I’d then define a new variable called rate and divide the cases by the population and * 10000.
In table3, I’d split the rate from the / value and create two separate columns for cases count and population count. I’d then group them by year and do the same as the above my using the mutate function to replace the current one.
## # A tibble: 317 × 79
## artist track date.entered wk1 wk2 wk3 wk4 wk5 wk6 wk7 wk8
## <chr> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2 Pac Baby… 2000-02-26 87 82 72 77 87 94 99 NA
## 2 2Ge+her The … 2000-09-02 91 87 92 NA NA NA NA NA
## 3 3 Doors D… Kryp… 2000-04-08 81 70 68 67 66 57 54 53
## 4 3 Doors D… Loser 2000-10-21 76 76 72 69 67 65 55 59
## 5 504 Boyz Wobb… 2000-04-15 57 34 25 17 17 31 36 49
## 6 98^0 Give… 2000-08-19 51 39 34 26 26 19 2 2
## 7 A*Teens Danc… 2000-07-08 97 97 96 95 100 NA NA NA
## 8 Aaliyah I Do… 2000-01-29 84 62 51 41 38 35 35 38
## 9 Aaliyah Try … 2000-03-18 59 53 38 28 21 18 16 14
## 10 Adams, Yo… Open… 2000-08-26 76 76 74 69 68 67 61 58
## # ℹ 307 more rows
## # ℹ 68 more variables: wk9 <dbl>, wk10 <dbl>, wk11 <dbl>, wk12 <dbl>,
## # wk13 <dbl>, wk14 <dbl>, wk15 <dbl>, wk16 <dbl>, wk17 <dbl>, wk18 <dbl>,
## # wk19 <dbl>, wk20 <dbl>, wk21 <dbl>, wk22 <dbl>, wk23 <dbl>, wk24 <dbl>,
## # wk25 <dbl>, wk26 <dbl>, wk27 <dbl>, wk28 <dbl>, wk29 <dbl>, wk30 <dbl>,
## # wk31 <dbl>, wk32 <dbl>, wk33 <dbl>, wk34 <dbl>, wk35 <dbl>, wk36 <dbl>,
## # wk37 <dbl>, wk38 <dbl>, wk39 <dbl>, wk40 <dbl>, wk41 <dbl>, wk42 <dbl>, …
billboard |>
pivot_longer(
cols = starts_with("wk"),
names_to = "week",
values_to = "rank",
values_drop_na = TRUE
)
## # A tibble: 5,307 × 5
## artist track date.entered week rank
## <chr> <chr> <date> <chr> <dbl>
## 1 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk1 87
## 2 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk2 82
## 3 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk3 72
## 4 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk4 77
## 5 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk5 87
## 6 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk6 94
## 7 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk7 99
## 8 2Ge+her The Hardest Part Of ... 2000-09-02 wk1 91
## 9 2Ge+her The Hardest Part Of ... 2000-09-02 wk2 87
## 10 2Ge+her The Hardest Part Of ... 2000-09-02 wk3 92
## # ℹ 5,297 more rows
billboard_longer <- billboard |>
pivot_longer(
cols = starts_with("wk"),
names_to = "week",
values_to = "rank",
values_drop_na = TRUE
) |>
mutate(
week = parse_number(week)
)
billboard_longer
## # A tibble: 5,307 × 5
## artist track date.entered week rank
## <chr> <chr> <date> <dbl> <dbl>
## 1 2 Pac Baby Don't Cry (Keep... 2000-02-26 1 87
## 2 2 Pac Baby Don't Cry (Keep... 2000-02-26 2 82
## 3 2 Pac Baby Don't Cry (Keep... 2000-02-26 3 72
## 4 2 Pac Baby Don't Cry (Keep... 2000-02-26 4 77
## 5 2 Pac Baby Don't Cry (Keep... 2000-02-26 5 87
## 6 2 Pac Baby Don't Cry (Keep... 2000-02-26 6 94
## 7 2 Pac Baby Don't Cry (Keep... 2000-02-26 7 99
## 8 2Ge+her The Hardest Part Of ... 2000-09-02 1 91
## 9 2Ge+her The Hardest Part Of ... 2000-09-02 2 87
## 10 2Ge+her The Hardest Part Of ... 2000-09-02 3 92
## # ℹ 5,297 more rows
billboard_longer |>
ggplot(aes(x = week, y = rank, group = track)) +
geom_line(alpha = 0.25) +
scale_y_reverse()
## # A tibble: 3 × 3
## id bp1 bp2
## <chr> <dbl> <dbl>
## 1 A 100 120
## 2 B 140 115
## 3 C 120 125
## # A tibble: 6 × 3
## id measurement value
## <chr> <chr> <dbl>
## 1 A bp1 100
## 2 A bp2 120
## 3 B bp1 140
## 4 B bp2 115
## 5 C bp1 120
## 6 C bp2 125
Datasets are just large matrices of data.
## # A tibble: 7,240 × 58
## country year sp_m_014 sp_m_1524 sp_m_2534 sp_m_3544 sp_m_4554 sp_m_5564
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Afghanistan 1980 NA NA NA NA NA NA
## 2 Afghanistan 1981 NA NA NA NA NA NA
## 3 Afghanistan 1982 NA NA NA NA NA NA
## 4 Afghanistan 1983 NA NA NA NA NA NA
## 5 Afghanistan 1984 NA NA NA NA NA NA
## 6 Afghanistan 1985 NA NA NA NA NA NA
## 7 Afghanistan 1986 NA NA NA NA NA NA
## 8 Afghanistan 1987 NA NA NA NA NA NA
## 9 Afghanistan 1988 NA NA NA NA NA NA
## 10 Afghanistan 1989 NA NA NA NA NA NA
## # ℹ 7,230 more rows
## # ℹ 50 more variables: sp_m_65 <dbl>, sp_f_014 <dbl>, sp_f_1524 <dbl>,
## # sp_f_2534 <dbl>, sp_f_3544 <dbl>, sp_f_4554 <dbl>, sp_f_5564 <dbl>,
## # sp_f_65 <dbl>, sn_m_014 <dbl>, sn_m_1524 <dbl>, sn_m_2534 <dbl>,
## # sn_m_3544 <dbl>, sn_m_4554 <dbl>, sn_m_5564 <dbl>, sn_m_65 <dbl>,
## # sn_f_014 <dbl>, sn_f_1524 <dbl>, sn_f_2534 <dbl>, sn_f_3544 <dbl>,
## # sn_f_4554 <dbl>, sn_f_5564 <dbl>, sn_f_65 <dbl>, ep_m_014 <dbl>, …
who2 |>
pivot_longer(
cols = !(country:year),
names_to = c("diagnosis", "gender", "age"),
names_sep = "_",
values_to = "count"
)
## # A tibble: 405,440 × 6
## country year diagnosis gender age count
## <chr> <dbl> <chr> <chr> <chr> <dbl>
## 1 Afghanistan 1980 sp m 014 NA
## 2 Afghanistan 1980 sp m 1524 NA
## 3 Afghanistan 1980 sp m 2534 NA
## 4 Afghanistan 1980 sp m 3544 NA
## 5 Afghanistan 1980 sp m 4554 NA
## 6 Afghanistan 1980 sp m 5564 NA
## 7 Afghanistan 1980 sp m 65 NA
## 8 Afghanistan 1980 sp f 014 NA
## 9 Afghanistan 1980 sp f 1524 NA
## 10 Afghanistan 1980 sp f 2534 NA
## # ℹ 405,430 more rows
## # A tibble: 5 × 5
## family dob_child1 dob_child2 name_child1 name_child2
## <int> <date> <date> <chr> <chr>
## 1 1 1998-11-26 2000-01-29 Susan Jose
## 2 2 1996-06-22 NA Mark <NA>
## 3 3 2002-07-11 2004-04-05 Sam Seth
## 4 4 2004-10-10 2009-08-27 Craig Khai
## 5 5 2000-12-05 2005-02-28 Parker Gracie
household |>
pivot_longer(
cols = !family,
names_to = c(".value", "child"),
names_sep = "_",
values_drop_na = TRUE
)
## # A tibble: 9 × 4
## family child dob name
## <int> <chr> <date> <chr>
## 1 1 child1 1998-11-26 Susan
## 2 1 child2 2000-01-29 Jose
## 3 2 child1 1996-06-22 Mark
## 4 3 child1 2002-07-11 Sam
## 5 3 child2 2004-04-05 Seth
## 6 4 child1 2004-10-10 Craig
## 7 4 child2 2009-08-27 Khai
## 8 5 child1 2000-12-05 Parker
## 9 5 child2 2005-02-28 Gracie
## # A tibble: 500 × 5
## org_pac_id org_nm measure_cd measure_title prf_rate
## <chr> <chr> <chr> <chr> <dbl>
## 1 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP… CAHPS for MI… 63
## 2 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP… CAHPS for MI… 87
## 3 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP… CAHPS for MI… 86
## 4 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP… CAHPS for MI… 57
## 5 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP… CAHPS for MI… 85
## 6 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP… CAHPS for MI… 24
## 7 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI… 59
## 8 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI… 85
## 9 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI… 83
## 10 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI… 63
## # ℹ 490 more rows
## # A tibble: 6 × 2
## measure_cd measure_title
## <chr> <chr>
## 1 CAHPS_GRP_1 CAHPS for MIPS SSM: Getting Timely Care, Appointments, and Infor…
## 2 CAHPS_GRP_2 CAHPS for MIPS SSM: How Well Providers Communicate
## 3 CAHPS_GRP_3 CAHPS for MIPS SSM: Patient's Rating of Provider
## 4 CAHPS_GRP_5 CAHPS for MIPS SSM: Health Promotion and Education
## 5 CAHPS_GRP_8 CAHPS for MIPS SSM: Courteous and Helpful Office Staff
## 6 CAHPS_GRP_12 CAHPS for MIPS SSM: Stewardship of Patient Resources
## # A tibble: 500 × 9
## org_pac_id org_nm measure_title CAHPS_GRP_1 CAHPS_GRP_2 CAHPS_GRP_3
## <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 0446157747 USC CARE MEDICA… CAHPS for MI… 63 NA NA
## 2 0446157747 USC CARE MEDICA… CAHPS for MI… NA 87 NA
## 3 0446157747 USC CARE MEDICA… CAHPS for MI… NA NA 86
## 4 0446157747 USC CARE MEDICA… CAHPS for MI… NA NA NA
## 5 0446157747 USC CARE MEDICA… CAHPS for MI… NA NA NA
## 6 0446157747 USC CARE MEDICA… CAHPS for MI… NA NA NA
## 7 0446162697 ASSOCIATION OF … CAHPS for MI… 59 NA NA
## 8 0446162697 ASSOCIATION OF … CAHPS for MI… NA 85 NA
## 9 0446162697 ASSOCIATION OF … CAHPS for MI… NA NA 83
## 10 0446162697 ASSOCIATION OF … CAHPS for MI… NA NA NA
## # ℹ 490 more rows
## # ℹ 3 more variables: CAHPS_GRP_5 <dbl>, CAHPS_GRP_8 <dbl>, CAHPS_GRP_12 <dbl>
cms_patient_experience |>
pivot_wider(
id_cols = starts_with("org"),
names_from = measure_cd,
values_from = prf_rate
)
## # A tibble: 95 × 8
## org_pac_id org_nm CAHPS_GRP_1 CAHPS_GRP_2 CAHPS_GRP_3 CAHPS_GRP_5 CAHPS_GRP_8
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0446157747 USC C… 63 87 86 57 85
## 2 0446162697 ASSOC… 59 85 83 63 88
## 3 0547164295 BEAVE… 49 NA 75 44 73
## 4 0749333730 CAPE … 67 84 85 65 82
## 5 0840104360 ALLIA… 66 87 87 64 87
## 6 0840109864 REX H… 73 87 84 67 91
## 7 0840513552 SCL H… 58 83 76 58 78
## 8 0941545784 GRITM… 46 86 81 54 NA
## 9 1052612785 COMMU… 65 84 80 58 87
## 10 1254237779 OUR L… 61 NA NA 65 NA
## # ℹ 85 more rows
## # ℹ 1 more variable: CAHPS_GRP_12 <dbl>
df <- tribble(
~id, ~measurement, ~value,
"A", "bp1", 100,
"B", "bp1", 140,
"B", "bp2", 115,
"A", "bp2", 120,
"A", "bp3", 105
)
df
## # A tibble: 5 × 3
## id measurement value
## <chr> <chr> <dbl>
## 1 A bp1 100
## 2 B bp1 140
## 3 B bp2 115
## 4 A bp2 120
## 5 A bp3 105
## # A tibble: 2 × 4
## id bp1 bp2 bp3
## <chr> <dbl> <dbl> <dbl>
## 1 A 100 120 105
## 2 B 140 115 NA
## [1] "bp1" "bp2" "bp3"
## # A tibble: 2 × 1
## id
## <chr>
## 1 A
## 2 B
## # A tibble: 2 × 4
## id x y z
## <chr> <lgl> <lgl> <lgl>
## 1 A NA NA NA
## 2 B NA NA NA
df <- tribble(
~id, ~measurement, ~value,
"A", "bp1", 100,
"A", "bp1", 102,
"A", "bp2", 120,
"B", "bp1", 140,
"B", "bp2", 115
)
df |>
pivot_wider(
names_from = measurement,
values_from = value
)
## Warning: Values from `value` are not uniquely identified; output will contain list-cols.
## • Use `values_fn = list` to suppress this warning.
## • Use `values_fn = {summary_fun}` to summarise duplicates.
## • Use the following dplyr code to identify duplicates.
## {data} |>
## dplyr::summarise(n = dplyr::n(), .by = c(id, measurement)) |>
## dplyr::filter(n > 1L)
## # A tibble: 2 × 3
## id bp1 bp2
## <chr> <list> <list>
## 1 A <dbl [2]> <dbl [1]>
## 2 B <dbl [1]> <dbl [1]>