1 Prerequisites

library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)

2 Tidy data

table1
## # A tibble: 6 × 4
##   country      year  cases population
##   <chr>       <dbl>  <dbl>      <dbl>
## 1 Afghanistan  1999    745   19987071
## 2 Afghanistan  2000   2666   20595360
## 3 Brazil       1999  37737  172006362
## 4 Brazil       2000  80488  174504898
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583
table2  
## # A tibble: 12 × 4
##    country      year type            count
##    <chr>       <dbl> <chr>           <dbl>
##  1 Afghanistan  1999 cases             745
##  2 Afghanistan  1999 population   19987071
##  3 Afghanistan  2000 cases            2666
##  4 Afghanistan  2000 population   20595360
##  5 Brazil       1999 cases           37737
##  6 Brazil       1999 population  172006362
##  7 Brazil       2000 cases           80488
##  8 Brazil       2000 population  174504898
##  9 China        1999 cases          212258
## 10 China        1999 population 1272915272
## 11 China        2000 cases          213766
## 12 China        2000 population 1280428583
table3
## # A tibble: 6 × 3
##   country      year rate             
##   <chr>       <dbl> <chr>            
## 1 Afghanistan  1999 745/19987071     
## 2 Afghanistan  2000 2666/20595360    
## 3 Brazil       1999 37737/172006362  
## 4 Brazil       2000 80488/174504898  
## 5 China        1999 212258/1272915272
## 6 China        2000 213766/1280428583
table1 |> 
  mutate(rate = cases / population * 10000)
## # A tibble: 6 × 5
##   country      year  cases population  rate
##   <chr>       <dbl>  <dbl>      <dbl> <dbl>
## 1 Afghanistan  1999    745   19987071 0.373
## 2 Afghanistan  2000   2666   20595360 1.29 
## 3 Brazil       1999  37737  172006362 2.19 
## 4 Brazil       2000  80488  174504898 4.61 
## 5 China        1999 212258 1272915272 1.67 
## 6 China        2000 213766 1280428583 1.67
table1 |> 
  group_by(year) |> 
  summarise(total_cases = sum(cases))
## # A tibble: 2 × 2
##    year total_cases
##   <dbl>       <dbl>
## 1  1999      250740
## 2  2000      296920
ggplot(table1, aes(x = year, y = cases)) +
  geom_line(aes(group = country), color = "grey50") +
  geom_point(aes(color = country, shape = country)) +
  scale_x_continuous(breaks = c(1999, 2000))

### Exercises

2.1 For each of the sample tables, describe what each observation and each column represents.

For table1, it has 4 variables. Country, year, cases and population.

For table2, it also has 4 variables. Country, year, type and count. It has 4 observations for each country.

For table3, this is split into 3 variables. Country, year and rate and has two observations for each nation.

2.2 Sketch out the process you’d use to calculate the rate for table2 and table3. You will need to perform four operations:

  1. Extract the number of TB cases per country per year.
  2. Extract the matching population per country per year.
  3. Divide cases by population, and multiply by 10000.
  4. Store back in the appropriate place.

I would group the dataset by year and then use the mutate function to get the values for cases count and population count. In that function I’d then define a new variable called rate and divide the cases by the population and * 10000.

In table3, I’d split the rate from the / value and create two separate columns for cases count and population count. I’d then group them by year and do the same as the above my using the mutate function to replace the current one.

3 Lengthening data

billboard
## # A tibble: 317 × 79
##    artist     track date.entered   wk1   wk2   wk3   wk4   wk5   wk6   wk7   wk8
##    <chr>      <chr> <date>       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 2 Pac      Baby… 2000-02-26      87    82    72    77    87    94    99    NA
##  2 2Ge+her    The … 2000-09-02      91    87    92    NA    NA    NA    NA    NA
##  3 3 Doors D… Kryp… 2000-04-08      81    70    68    67    66    57    54    53
##  4 3 Doors D… Loser 2000-10-21      76    76    72    69    67    65    55    59
##  5 504 Boyz   Wobb… 2000-04-15      57    34    25    17    17    31    36    49
##  6 98^0       Give… 2000-08-19      51    39    34    26    26    19     2     2
##  7 A*Teens    Danc… 2000-07-08      97    97    96    95   100    NA    NA    NA
##  8 Aaliyah    I Do… 2000-01-29      84    62    51    41    38    35    35    38
##  9 Aaliyah    Try … 2000-03-18      59    53    38    28    21    18    16    14
## 10 Adams, Yo… Open… 2000-08-26      76    76    74    69    68    67    61    58
## # ℹ 307 more rows
## # ℹ 68 more variables: wk9 <dbl>, wk10 <dbl>, wk11 <dbl>, wk12 <dbl>,
## #   wk13 <dbl>, wk14 <dbl>, wk15 <dbl>, wk16 <dbl>, wk17 <dbl>, wk18 <dbl>,
## #   wk19 <dbl>, wk20 <dbl>, wk21 <dbl>, wk22 <dbl>, wk23 <dbl>, wk24 <dbl>,
## #   wk25 <dbl>, wk26 <dbl>, wk27 <dbl>, wk28 <dbl>, wk29 <dbl>, wk30 <dbl>,
## #   wk31 <dbl>, wk32 <dbl>, wk33 <dbl>, wk34 <dbl>, wk35 <dbl>, wk36 <dbl>,
## #   wk37 <dbl>, wk38 <dbl>, wk39 <dbl>, wk40 <dbl>, wk41 <dbl>, wk42 <dbl>, …
billboard |> 
  pivot_longer(
    cols = starts_with("wk"),
    names_to = "week",
    values_to = "rank",
    values_drop_na = TRUE
  )
## # A tibble: 5,307 × 5
##    artist  track                   date.entered week   rank
##    <chr>   <chr>                   <date>       <chr> <dbl>
##  1 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk1      87
##  2 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk2      82
##  3 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk3      72
##  4 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk4      77
##  5 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk5      87
##  6 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk6      94
##  7 2 Pac   Baby Don't Cry (Keep... 2000-02-26   wk7      99
##  8 2Ge+her The Hardest Part Of ... 2000-09-02   wk1      91
##  9 2Ge+her The Hardest Part Of ... 2000-09-02   wk2      87
## 10 2Ge+her The Hardest Part Of ... 2000-09-02   wk3      92
## # ℹ 5,297 more rows
billboard_longer <- billboard |> 
  pivot_longer(
    cols = starts_with("wk"), 
    names_to = "week", 
    values_to = "rank",
    values_drop_na = TRUE
  ) |> 
  mutate(
    week = parse_number(week)
  )

billboard_longer
## # A tibble: 5,307 × 5
##    artist  track                   date.entered  week  rank
##    <chr>   <chr>                   <date>       <dbl> <dbl>
##  1 2 Pac   Baby Don't Cry (Keep... 2000-02-26       1    87
##  2 2 Pac   Baby Don't Cry (Keep... 2000-02-26       2    82
##  3 2 Pac   Baby Don't Cry (Keep... 2000-02-26       3    72
##  4 2 Pac   Baby Don't Cry (Keep... 2000-02-26       4    77
##  5 2 Pac   Baby Don't Cry (Keep... 2000-02-26       5    87
##  6 2 Pac   Baby Don't Cry (Keep... 2000-02-26       6    94
##  7 2 Pac   Baby Don't Cry (Keep... 2000-02-26       7    99
##  8 2Ge+her The Hardest Part Of ... 2000-09-02       1    91
##  9 2Ge+her The Hardest Part Of ... 2000-09-02       2    87
## 10 2Ge+her The Hardest Part Of ... 2000-09-02       3    92
## # ℹ 5,297 more rows
billboard_longer |> 
  ggplot(aes(x = week, y = rank, group = track)) +
  geom_line(alpha = 0.25) +
  scale_y_reverse()

4 Pivoting

df <- tribble(
  ~id, ~bp1, ~bp2,
  "A", 100, 120,
  "B", 140, 115,
  "C", 120, 125
)

df
## # A tibble: 3 × 3
##   id      bp1   bp2
##   <chr> <dbl> <dbl>
## 1 A       100   120
## 2 B       140   115
## 3 C       120   125
df |> 
  pivot_longer(
    cols = bp1:bp2,
    names_to = "measurement",
    values_to = "value"
  )
## # A tibble: 6 × 3
##   id    measurement value
##   <chr> <chr>       <dbl>
## 1 A     bp1           100
## 2 A     bp2           120
## 3 B     bp1           140
## 4 B     bp2           115
## 5 C     bp1           120
## 6 C     bp2           125

4.1 How reshaping works

Datasets are just large matrices of data.

pivoting1 pivoting2

5 Many variable in column names

who2
## # A tibble: 7,240 × 58
##    country      year sp_m_014 sp_m_1524 sp_m_2534 sp_m_3544 sp_m_4554 sp_m_5564
##    <chr>       <dbl>    <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
##  1 Afghanistan  1980       NA        NA        NA        NA        NA        NA
##  2 Afghanistan  1981       NA        NA        NA        NA        NA        NA
##  3 Afghanistan  1982       NA        NA        NA        NA        NA        NA
##  4 Afghanistan  1983       NA        NA        NA        NA        NA        NA
##  5 Afghanistan  1984       NA        NA        NA        NA        NA        NA
##  6 Afghanistan  1985       NA        NA        NA        NA        NA        NA
##  7 Afghanistan  1986       NA        NA        NA        NA        NA        NA
##  8 Afghanistan  1987       NA        NA        NA        NA        NA        NA
##  9 Afghanistan  1988       NA        NA        NA        NA        NA        NA
## 10 Afghanistan  1989       NA        NA        NA        NA        NA        NA
## # ℹ 7,230 more rows
## # ℹ 50 more variables: sp_m_65 <dbl>, sp_f_014 <dbl>, sp_f_1524 <dbl>,
## #   sp_f_2534 <dbl>, sp_f_3544 <dbl>, sp_f_4554 <dbl>, sp_f_5564 <dbl>,
## #   sp_f_65 <dbl>, sn_m_014 <dbl>, sn_m_1524 <dbl>, sn_m_2534 <dbl>,
## #   sn_m_3544 <dbl>, sn_m_4554 <dbl>, sn_m_5564 <dbl>, sn_m_65 <dbl>,
## #   sn_f_014 <dbl>, sn_f_1524 <dbl>, sn_f_2534 <dbl>, sn_f_3544 <dbl>,
## #   sn_f_4554 <dbl>, sn_f_5564 <dbl>, sn_f_65 <dbl>, ep_m_014 <dbl>, …
who2 |> 
  pivot_longer(
    cols = !(country:year),
    names_to = c("diagnosis", "gender", "age"),
    names_sep = "_",
    values_to = "count"
  )
## # A tibble: 405,440 × 6
##    country      year diagnosis gender age   count
##    <chr>       <dbl> <chr>     <chr>  <chr> <dbl>
##  1 Afghanistan  1980 sp        m      014      NA
##  2 Afghanistan  1980 sp        m      1524     NA
##  3 Afghanistan  1980 sp        m      2534     NA
##  4 Afghanistan  1980 sp        m      3544     NA
##  5 Afghanistan  1980 sp        m      4554     NA
##  6 Afghanistan  1980 sp        m      5564     NA
##  7 Afghanistan  1980 sp        m      65       NA
##  8 Afghanistan  1980 sp        f      014      NA
##  9 Afghanistan  1980 sp        f      1524     NA
## 10 Afghanistan  1980 sp        f      2534     NA
## # ℹ 405,430 more rows
pivoting3
pivoting3
household
## # A tibble: 5 × 5
##   family dob_child1 dob_child2 name_child1 name_child2
##    <int> <date>     <date>     <chr>       <chr>      
## 1      1 1998-11-26 2000-01-29 Susan       Jose       
## 2      2 1996-06-22 NA         Mark        <NA>       
## 3      3 2002-07-11 2004-04-05 Sam         Seth       
## 4      4 2004-10-10 2009-08-27 Craig       Khai       
## 5      5 2000-12-05 2005-02-28 Parker      Gracie
household |> 
  pivot_longer(
    cols = !family,
    names_to = c(".value", "child"),
    names_sep = "_",
    values_drop_na = TRUE
  )
## # A tibble: 9 × 4
##   family child  dob        name  
##    <int> <chr>  <date>     <chr> 
## 1      1 child1 1998-11-26 Susan 
## 2      1 child2 2000-01-29 Jose  
## 3      2 child1 1996-06-22 Mark  
## 4      3 child1 2002-07-11 Sam   
## 5      3 child2 2004-04-05 Seth  
## 6      4 child1 2004-10-10 Craig 
## 7      4 child2 2009-08-27 Khai  
## 8      5 child1 2000-12-05 Parker
## 9      5 child2 2005-02-28 Gracie
pivoting4
pivoting4

6 Widening data

cms_patient_experience
## # A tibble: 500 × 5
##    org_pac_id org_nm                           measure_cd measure_title prf_rate
##    <chr>      <chr>                            <chr>      <chr>            <dbl>
##  1 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       63
##  2 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       87
##  3 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       86
##  4 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       57
##  5 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       85
##  6 0446157747 USC CARE MEDICAL GROUP INC       CAHPS_GRP… CAHPS for MI…       24
##  7 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI…       59
##  8 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI…       85
##  9 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI…       83
## 10 0446162697 ASSOCIATION OF UNIVERSITY PHYSI… CAHPS_GRP… CAHPS for MI…       63
## # ℹ 490 more rows
cms_patient_experience |> 
  distinct(measure_cd, measure_title)
## # A tibble: 6 × 2
##   measure_cd   measure_title                                                    
##   <chr>        <chr>                                                            
## 1 CAHPS_GRP_1  CAHPS for MIPS SSM: Getting Timely Care, Appointments, and Infor…
## 2 CAHPS_GRP_2  CAHPS for MIPS SSM: How Well Providers Communicate               
## 3 CAHPS_GRP_3  CAHPS for MIPS SSM: Patient's Rating of Provider                 
## 4 CAHPS_GRP_5  CAHPS for MIPS SSM: Health Promotion and Education               
## 5 CAHPS_GRP_8  CAHPS for MIPS SSM: Courteous and Helpful Office Staff           
## 6 CAHPS_GRP_12 CAHPS for MIPS SSM: Stewardship of Patient Resources
cms_patient_experience |> 
  pivot_wider(
    names_from = measure_cd,
    values_from = prf_rate
  )
## # A tibble: 500 × 9
##    org_pac_id org_nm           measure_title CAHPS_GRP_1 CAHPS_GRP_2 CAHPS_GRP_3
##    <chr>      <chr>            <chr>               <dbl>       <dbl>       <dbl>
##  1 0446157747 USC CARE MEDICA… CAHPS for MI…          63          NA          NA
##  2 0446157747 USC CARE MEDICA… CAHPS for MI…          NA          87          NA
##  3 0446157747 USC CARE MEDICA… CAHPS for MI…          NA          NA          86
##  4 0446157747 USC CARE MEDICA… CAHPS for MI…          NA          NA          NA
##  5 0446157747 USC CARE MEDICA… CAHPS for MI…          NA          NA          NA
##  6 0446157747 USC CARE MEDICA… CAHPS for MI…          NA          NA          NA
##  7 0446162697 ASSOCIATION OF … CAHPS for MI…          59          NA          NA
##  8 0446162697 ASSOCIATION OF … CAHPS for MI…          NA          85          NA
##  9 0446162697 ASSOCIATION OF … CAHPS for MI…          NA          NA          83
## 10 0446162697 ASSOCIATION OF … CAHPS for MI…          NA          NA          NA
## # ℹ 490 more rows
## # ℹ 3 more variables: CAHPS_GRP_5 <dbl>, CAHPS_GRP_8 <dbl>, CAHPS_GRP_12 <dbl>
cms_patient_experience |> 
  pivot_wider(
    id_cols = starts_with("org"),
    names_from = measure_cd,
    values_from = prf_rate
  )
## # A tibble: 95 × 8
##    org_pac_id org_nm CAHPS_GRP_1 CAHPS_GRP_2 CAHPS_GRP_3 CAHPS_GRP_5 CAHPS_GRP_8
##    <chr>      <chr>        <dbl>       <dbl>       <dbl>       <dbl>       <dbl>
##  1 0446157747 USC C…          63          87          86          57          85
##  2 0446162697 ASSOC…          59          85          83          63          88
##  3 0547164295 BEAVE…          49          NA          75          44          73
##  4 0749333730 CAPE …          67          84          85          65          82
##  5 0840104360 ALLIA…          66          87          87          64          87
##  6 0840109864 REX H…          73          87          84          67          91
##  7 0840513552 SCL H…          58          83          76          58          78
##  8 0941545784 GRITM…          46          86          81          54          NA
##  9 1052612785 COMMU…          65          84          80          58          87
## 10 1254237779 OUR L…          61          NA          NA          65          NA
## # ℹ 85 more rows
## # ℹ 1 more variable: CAHPS_GRP_12 <dbl>

7 How pivot_wider() works

df <- tribble(
  ~id, ~measurement, ~value,
  "A",        "bp1",    100,
  "B",        "bp1",    140,
  "B",        "bp2",    115, 
  "A",        "bp2",    120,
  "A",        "bp3",    105
)

df
## # A tibble: 5 × 3
##   id    measurement value
##   <chr> <chr>       <dbl>
## 1 A     bp1           100
## 2 B     bp1           140
## 3 B     bp2           115
## 4 A     bp2           120
## 5 A     bp3           105
df |> 
  pivot_wider(
    names_from = measurement,
    values_from = value
  )
## # A tibble: 2 × 4
##   id      bp1   bp2   bp3
##   <chr> <dbl> <dbl> <dbl>
## 1 A       100   120   105
## 2 B       140   115    NA
df |> 
  distinct(measurement) |> 
  pull()
## [1] "bp1" "bp2" "bp3"
df |> 
  select(-measurement, -value) |> 
  distinct()
## # A tibble: 2 × 1
##   id   
##   <chr>
## 1 A    
## 2 B
df |> 
  select(-measurement, -value) |> 
  distinct() |> 
  mutate(x = NA, y = NA, z = NA)
## # A tibble: 2 × 4
##   id    x     y     z    
##   <chr> <lgl> <lgl> <lgl>
## 1 A     NA    NA    NA   
## 2 B     NA    NA    NA
df <- tribble(
  ~id, ~measurement, ~value,
  "A",        "bp1",    100,
  "A",        "bp1",    102,
  "A",        "bp2",    120,
  "B",        "bp1",    140, 
  "B",        "bp2",    115
)

df |>
  pivot_wider(
    names_from = measurement,
    values_from = value
  )
## Warning: Values from `value` are not uniquely identified; output will contain list-cols.
## • Use `values_fn = list` to suppress this warning.
## • Use `values_fn = {summary_fun}` to summarise duplicates.
## • Use the following dplyr code to identify duplicates.
##   {data} |>
##   dplyr::summarise(n = dplyr::n(), .by = c(id, measurement)) |>
##   dplyr::filter(n > 1L)
## # A tibble: 2 × 3
##   id    bp1       bp2      
##   <chr> <list>    <list>   
## 1 A     <dbl [2]> <dbl [1]>
## 2 B     <dbl [1]> <dbl [1]>