1 FUNCTIONS

2 DATA PREPARATION

2.1 Load all sheets of an Excel

#data8 =import("https://drive.google.com/uc?id=19uJnllP2hUtm_RwYB_ukjsSnBVvepGjN&export=download")%>%setDT()
#column_names <- names(data8)
#numeric_columns <- column_names[is.na(as.numeric(column_names))]
#HLM_ICC_rWG(data8, group="MNum", icc.var="LPERFV2")
#data8.GroC=group_mean_center(data8, names(data8),by="MNum", add.suffix=".GroC")
#export(data8.GroC,"trust esm variables 8.GroC.sav")

X: Leader delegation=LDLV Level-1 Moderator [Mo1]: Leader emotional exhaustion =LEDV Level-2 Moderator [Mo2]: LMX=LMX

Mediator [M]: Follower work engagement =MWEV Y: Follower task performance(t+1)=LPERFV2

Controls: [C1] Interaction Freuencey=MIFV, [C2] Follower work engagement (t-1)=MWEV0, [C4] Leader delegation(t-1)=LDLV0, [C5] Leader emotional exhaustion (t-1)=LEDV0, [C3] Follower task performance(t-1)=LPERFV0

2.2 Same day: All group mean centered

data8.GroC =import("https://drive.google.com/uc?id=1UflYVV6-fImExSKfGc34e58fwvsxxmZM&export=download")%>%setDT()

data8.GroC=setnames(data8.GroC, 
         old = c("LDLV.GroC", "LEDV", "MLMXP.GroC", "MWEV.GroC", "LPERF.GroC", 
                 "MIFV.GroC", "MWEV0.GroC", "LDLV0.GroC", "LEDV0.GroC", "LPERFV0.GroC"),
         new = c("X", "Mo1", "Mo2", "M", "Y", 
                 "C1", "C2", "C3", "C4", "C5"))
## Error: 在 'old' 中未找到如下列名:[LPERF.GroC]。请考虑设置 skip_absent=TRUE。

2.3 Reproduce HRs (f - mod lmx.out): All group mean centered

data8.GroC =import("https://drive.google.com/uc?id=1UflYVV6-fImExSKfGc34e58fwvsxxmZM&export=download")%>%setDT()
data8.GroC$Mo2 <- scale(data8.GroC$MLMXP, center = TRUE, scale = FALSE)

data8.GroC=setnames(data8.GroC, 
         old = c("LDLV0.GroC", "LEEHV0.GroC", "MWEV.GroC", "LPERFV2.GroC", 
                 "MIFV0.GroC","MIFV.GroC", "MWEV0.GroC", "LPERFV0.GroC", "LDLV.GroC", "LEDV.GroC"),
         new = c("X", "Mo1", "M", "Y", 
                 "C0","C1", "C2", "C3", "C4", "C5"))
    X=LDLV0; !leader delegation
    C0=MIFV0;
    C1=MIFV;
    C2=MWEV0;
    C3=LPERFV0;
    C4=LDLV;
    C5=LEDV;
    !C6=LPERFV;
    !Mo1=LEEHV0; !leader emotionale exhaustion
    Mo2=MLMXP; !LSABP;
    Me=MWEV;
    Y=LPERFV2;
    CENTER X(GROUPMEAN);
    !CENTER X Mo1(GROUPMEAN);
    !Inter1 = X*Mo1;
    CENTER Mo2 (GRANDMEAN);

2.4 ## Same day: All group mean centered

data8.GroC =import("https://drive.google.com/uc?id=1UflYVV6-fImExSKfGc34e58fwvsxxmZM&export=download")%>%setDT()
data8.GroC$Mo2 <- scale(data8.GroC$MLMXP, center = TRUE, scale = FALSE)

data8.GroC=setnames(data8.GroC, 
         old = c("LDLV.GroC", "LEDV.GroC", "MWEV.GroC", "LPERFV2.GroC", 
                 "MIFV.GroC", "MWEV0.GroC", "LDLV0.GroC", "LEDV0.GroC", "LPERFV0.GroC"),
         new = c("X", "Mo1", "M", "Y", 
                 "C1", "C2", "C3", "C4", "C5"))

IV: LDLV Level-1 Moderator: LEDV Level-2 Moderator: LMX Mediator: MWEV DV: LPERFV2 Controls: MIFV, MWEV0, LDLV0, LEDV0, LPERFV0

# 定义变量名称列表
variables <- c("X", "Mo1", "Mo2", "M", "Y", "C1", "C2", "C3", "C4", "C5")#"C0", 

# 创建一个结果列表来存储每个变量的 ICC 和 rWG 结果
results <- list()

# 循环计算每个变量的 ICC 和 rWG
for (var in variables) {
  result <- HLM_ICC_rWG(data8.GroC, group = "MNum", icc.var = var)
  results[[var]] <- result
}
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 1071 observations ("X")
## Level 2: K = 106 groups ("MNum")
## 
##        n (group sizes)
## Min.               6.0
## Median            10.0
## Mean              10.1
## Max.              16.0
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "X"
## 
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
## 
## rWG variable: "X"
## 
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.
## ─────────────────────────────────────────────
## rWG  0.103   0.782  0.866 0.833   0.920 1.000
## ─────────────────────────────────────────────
## 
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 1071 observations ("Mo1")
## Level 2: K = 106 groups ("MNum")
## 
##        n (group sizes)
## Min.               6.0
## Median            10.0
## Mean              10.1
## Max.              16.0
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "Mo1"
## 
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
## 
## rWG variable: "Mo1"
## 
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.
## ─────────────────────────────────────────────
## rWG  0.000   0.760  0.914 0.845   0.979 1.000
## ─────────────────────────────────────────────
## Error in eval_f(x, ...): Downdated VtV is not positive definite
#Describe(data8.GroC[,.variables])

3 ANALYSIS WITHOUT CONTROL

3.1 Model 1: Testing the main effect

M1.MonX <- lmer(
  M ~ X + 
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
#summary(M1.MonXC)

3.2 Model 2a: Adding the moderation effect of Mo1 (Leader emotional exhaustion)

M2a.MonXxMo1 <- lmer(
  M ~ X * Mo1 + 
    
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)

PROCESS(data8.GroC, y="M", x="X", mods="Mo1", cluster ="MNum", hlm.re.y = "(X | MNum)", center=FALSE)#, file="D2.doc")
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : M
## -  Predictor (X) : X
## -  Mediators (M) : -
## - Moderators (W) : Mo1
## - Covariates (C) : -
## -   HLM Clusters : MNum
## 
## Formula of Outcome:
## -    M ~ X*Mo1 + (X | MNum)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────
##                          (1) M       (2) M     
## ───────────────────────────────────────────────
## (Intercept)                -0.000      -0.000  
##                            (0.026)     (0.026) 
## X                           0.080 *     0.080 *
##                            (0.037)     (0.037) 
## Mo1                                    -0.005  
##                                        (0.032) 
## X:Mo1                                  -0.003  
##                                        (0.029) 
## ───────────────────────────────────────────────
## Marginal R^2                0.006       0.006  
## Conditional R^2             0.031       0.031  
## AIC                      2760.910    2775.229  
## BIC                      2790.768    2815.040  
## Num. obs.                1071        1071      
## Num. groups: MNum         106         106      
## Var: MNum (Intercept)       0.000       0.000  
## Var: MNum X                 0.026       0.027  
## Cov: MNum (Intercept) X     0.000       0.000  
## Var: Residual               0.741       0.742  
## ───────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 1071
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "M" (Y)
## ───────────────────────────────
##             F df1 df2     p    
## ───────────────────────────────
## X * Mo1  0.02   1 930  .902    
## ───────────────────────────────
## 
## Simple Slopes: "X" (X) ==> "M" (Y)
## ─────────────────────────────────────────────────────────────
##  "Mo1"         Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────
##  -0.855 (- SD)  0.083 (0.047) 1.754  .083 .   [-0.010, 0.176]
##  0.000 (Mean)   0.080 (0.037) 2.143  .038 *   [ 0.007, 0.153]
##  0.855 (+ SD)   0.077 (0.042) 1.844  .070 .   [-0.005, 0.159]
## ─────────────────────────────────────────────────────────────
#summary(M2a.MonXC)

3.3 Model 2b: Testing the moderation effect on follower task performance (Y)

M2b.MonXxMo1M <- lmer(
  Y ~ X * Mo1 + 
    M + 
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
#summary(M2b.MonXC)

3.4 Model 3a: Adding the cross-level moderation effect of Mo2 (LMX) on follower work engagement

M3a.MonXxMo2 <- lmer(
  M ~ X * Mo2 + 
    
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
PROCESS(data8.GroC, y="M", x="X", mods="Mo2", cluster ="MNum", hlm.re.y = "(X | MNum)", center=FALSE)#, file="D2.doc")
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : M
## -  Predictor (X) : X
## -  Mediators (M) : -
## - Moderators (W) : Mo2
## - Covariates (C) : -
## -   HLM Clusters : MNum
## 
## Formula of Outcome:
## -    M ~ X*Mo2 + (X | MNum)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────
##                          (1) M      (2) M     
## ──────────────────────────────────────────────
## (Intercept)                -0.000     -0.000  
##                            (0.027)    (0.027) 
## X                           0.070      0.073 *
##                            (0.036)    (0.036) 
## Mo2                                   -0.000  
##                                       (0.023) 
## X:Mo2                                  0.045  
##                                       (0.032) 
## ──────────────────────────────────────────────
## Marginal R^2                0.005      0.007  
## Conditional R^2             0.027      0.027  
## AIC                      2704.442   2717.190  
## BIC                      2734.187   2756.850  
## Num. obs.                1051       1051      
## Num. groups: MNum         104        104      
## Var: MNum (Intercept)       0.000      0.000  
## Var: MNum X                 0.023      0.021  
## Cov: MNum (Intercept) X     0.000      0.000  
## Var: Residual               0.739      0.740  
## ──────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 1051 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "M" (Y)
## ───────────────────────────────
##             F df1 df2     p    
## ───────────────────────────────
## X * Mo2  1.96   1  45  .168    
## ───────────────────────────────
## 
## Simple Slopes: "X" (X) ==> "M" (Y)
## ─────────────────────────────────────────────────────────────
##  "Mo2"         Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────
##  -1.137 (- SD)  0.022 (0.050) 0.437  .664     [-0.076, 0.120]
##  -0.000 (Mean)  0.073 (0.036) 2.036  .049 *   [ 0.003, 0.144]
##  1.137 (+ SD)   0.125 (0.053) 2.357  .023 *   [ 0.021, 0.229]
## ─────────────────────────────────────────────────────────────
#summary(M3a.MonXC)

3.5 Model 3b: Testing the cross-level moderation effect on follower task performance

M3b.MonXxMo2M <- lmer(
  Y ~ X * Mo2 + 
    M + 
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
#summary(M3b.MonXxMo2M)

3.6 Model 4a: Testing both moderators (Mo1 and Mo2) on follower work engagement

M4a.MonXxMo12 <- lmer(
  M ~ X * Mo1 + X * Mo2 + 
    
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
PROCESS(data8.GroC, y="M", x="X", mods=cc("Mo1,Mo2"), cluster ="MNum", hlm.re.y = "(X | MNum)", center=FALSE)#, file="D2.doc")
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 2 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Parallel Moderation (2 mods; 2-way)
## -    Outcome (Y) : M
## -  Predictor (X) : X
## -  Mediators (M) : -
## - Moderators (W) : Mo1, Mo2
## - Covariates (C) : -
## -   HLM Clusters : MNum
## 
## Formula of Outcome:
## -    M ~ X*Mo1 + X*Mo2 + (X | MNum)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────
##                          (1) M      (2) M     
## ──────────────────────────────────────────────
## (Intercept)                -0.000     -0.000  
##                            (0.027)    (0.027) 
## X                           0.070      0.074 *
##                            (0.036)    (0.036) 
## Mo1                                   -0.002  
##                                       (0.032) 
## Mo2                                    0.000  
##                                       (0.023) 
## X:Mo1                                 -0.007  
##                                       (0.029) 
## X:Mo2                                  0.045  
##                                       (0.032) 
## ──────────────────────────────────────────────
## Marginal R^2                0.005      0.007  
## Conditional R^2             0.027      0.028  
## AIC                      2704.442   2731.467  
## BIC                      2734.187   2781.042  
## Num. obs.                1051       1051      
## Num. groups: MNum         104        104      
## Var: MNum (Intercept)       0.000      0.000  
## Var: MNum X                 0.023      0.021  
## Cov: MNum (Intercept) X     0.000      0.000  
## Var: Residual               0.739      0.741  
## ──────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Parallel Moderation (2 mods; 2-way) (Model 2)
## Sample Size : 1051 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effects on "M" (Y)
## ───────────────────────────────
##             F df1 df2     p    
## ───────────────────────────────
## X * Mo1  0.05   1 877  .817    
## X * Mo2  1.95   1  44  .170    
## ───────────────────────────────
## 
## Simple Slopes: "X" (X) ==> "M" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "Mo2"         "Mo1"         Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  -1.137 (- SD) -0.851 (- SD)  0.029 (0.058) 0.489  .627     [-0.086, 0.143]
##  -1.137 (- SD) 0.000 (Mean)   0.023 (0.050) 0.454  .652     [-0.076, 0.122]
##  -1.137 (- SD) 0.851 (+ SD)   0.017 (0.053) 0.323  .748     [-0.087, 0.122]
##  -0.000 (Mean) -0.851 (- SD)  0.080 (0.046) 1.722  .089 .   [-0.011, 0.171]
##  -0.000 (Mean) 0.000 (Mean)   0.074 (0.036) 2.039  .048 *   [ 0.003, 0.146]
##  -0.000 (Mean) 0.851 (+ SD)   0.069 (0.041) 1.677  .099 .   [-0.012, 0.149]
##  1.137 (+ SD)  -0.851 (- SD)  0.131 (0.060) 2.182  .032 *   [ 0.013, 0.249]
##  1.137 (+ SD)  0.000 (Mean)   0.126 (0.053) 2.363  .022 *   [ 0.021, 0.230]
##  1.137 (+ SD)  0.851 (+ SD)   0.120 (0.057) 2.118  .038 *   [ 0.009, 0.231]
## ───────────────────────────────────────────────────────────────────────────
#summary(M4a.MonXC)

3.7 Model 4b: Testing both moderators (Mo1 and Mo2) on follower task performance

M4b.MonXxMo12M <- lmer(
  Y ~ X * Mo1 + X * Mo2 + 
    M + 
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
#summary(M4b.MonXC)
model_summary(list(M1.MonX,M2a.MonXxMo1,M3a.MonXxMo2,M4a.MonXxMo12,M2b.MonXxMo1M,M3b.MonXxMo2M,M4b.MonXxMo12M))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────
##                          (1) M       (2) M       (3) M       (4) M       (5) Y       (6) Y      (7) Y     
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                -0.000      -0.000      -0.000      -0.000       0.000       0.001      0.000  
##                            (0.026)     (0.026)     (0.027)     (0.027)     (0.024)     (0.025)    (0.025) 
## X                           0.080 *     0.080 *     0.073 *     0.074 *     0.063       0.050      0.062  
##                            (0.037)     (0.037)     (0.036)     (0.036)     (0.039)     (0.038)    (0.039) 
## Mo1                                    -0.005                  -0.002      -0.018                 -0.011  
##                                        (0.032)                 (0.032)     (0.029)                (0.030) 
## X:Mo1                                  -0.003                  -0.007      -0.059 *               -0.059 *
##                                        (0.029)                 (0.029)     (0.026)                (0.026) 
## Mo2                                                -0.000       0.000                  -0.000      0.001  
##                                                    (0.023)     (0.023)                 (0.022)    (0.022) 
## X:Mo2                                               0.045       0.045                   0.028      0.027  
##                                                    (0.032)     (0.032)                 (0.034)    (0.035) 
## M                                                                           0.014       0.021      0.020  
##                                                                            (0.029)     (0.029)    (0.029) 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                0.006       0.006       0.007       0.007       0.010       0.005      0.010  
## Conditional R^2             0.031       0.031       0.027       0.028       0.067       0.059      0.067  
## AIC                      2760.910    2775.229    2717.190    2731.467    2269.016    2237.369   2246.696  
## BIC                      2790.768    2815.040    2756.850    2781.042    2312.865    2281.049   2300.082  
## Num. obs.                1071        1071        1051        1051         965         947        947      
## Num. groups: MNum         106         106         104         104         106         104        104      
## Var: MNum (Intercept)       0.000       0.000       0.000       0.000       0.000       0.000      0.000  
## Var: MNum X                 0.026       0.027       0.021       0.021       0.047       0.044      0.047  
## Cov: MNum (Intercept) X     0.000       0.000       0.000       0.000       0.000       0.000      0.000  
## Var: Residual               0.741       0.742       0.740       0.741       0.565       0.572      0.569  
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

4 PLOT

5 ANALYSIS WITH CONTROL

5.1 Model 1: Testing the main effect

M1.MonXC <- lmer(
  M ~ X + C1 + C2 + C3 + C4 + C5 + 
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
#summary(M1.MonXC)

5.2 Model 2a: Adding the moderation effect of Mo1 (Leader emotional exhaustion)

M2a.MonXxMo1C <- lmer(
  M ~ X * Mo1 + 
    C1 + C2 + C3 + C4 + C5 + 
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
PROCESS(data8.GroC, y="M", x="X", mods="Mo1", cluster ="MNum", hlm.re.y = "(X | MNum)", center=FALSE,
        covs=cc("C1,C2,C3,C4,C5"))#, file="D2.doc")
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : M
## -  Predictor (X) : X
## -  Mediators (M) : -
## - Moderators (W) : Mo1
## - Covariates (C) : C1, C2, C3, C4, C5
## -   HLM Clusters : MNum
## 
## Formula of Outcome:
## -    M ~ C1 + C2 + C3 + C4 + C5 + X*Mo1 + (X | MNum)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────
##                          (1) M         (2) M       
## ───────────────────────────────────────────────────
## (Intercept)                 0.013         0.012    
##                            (0.026)       (0.026)   
## C1                          0.201 ***     0.202 ***
##                            (0.023)       (0.023)   
## C2                          0.062 *       0.062 *  
##                            (0.031)       (0.031)   
## C3                          0.062         0.063    
##                            (0.035)       (0.035)   
## C4                          0.011         0.012    
##                            (0.031)       (0.031)   
## C5                         -0.046        -0.048    
##                            (0.036)       (0.036)   
## X                           0.051         0.051    
##                            (0.033)       (0.033)   
## Mo1                                      -0.033    
##                                          (0.032)   
## X:Mo1                                    -0.012    
##                                          (0.028)   
## ───────────────────────────────────────────────────
## Marginal R^2                0.087         0.089    
## Conditional R^2             0.087         0.089    
## AIC                      2408.821      2421.914    
## BIC                      2462.414      2485.252    
## Num. obs.                 965           965        
## Num. groups: MNum         106           106        
## Var: MNum (Intercept)       0.000         0.000    
## Var: MNum X                 0.000         0.000    
## Cov: MNum (Intercept) X     0.000         0.000    
## Var: Residual               0.674         0.674    
## ───────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 965 (106 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "M" (Y)
## ───────────────────────────────
##             F df1 df2     p    
## ───────────────────────────────
## X * Mo1  0.18   1 956  .669    
## ───────────────────────────────
## 
## Simple Slopes: "X" (X) ==> "M" (Y)
## ─────────────────────────────────────────────────────────────
##  "Mo1"         Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────
##  -0.857 (- SD)  0.061 (0.043) 1.409  .159     [-0.024, 0.146]
##  -0.012 (Mean)  0.051 (0.033) 1.532  .126     [-0.014, 0.117]
##  0.833 (+ SD)   0.041 (0.038) 1.084  .279     [-0.033, 0.116]
## ─────────────────────────────────────────────────────────────
#summary(M2a.MonXC)

5.3 Model 2b: Testing the moderation effect on follower task performance (Y)

M2b.MonXxMo1MC <- lmer(
  Y ~ X * Mo1 + 
    M + C1 + C2 + C3 + C4 + C5 + 
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
#summary(M2b.MonXC)

5.4 Model 3a: Adding the cross-level moderation effect of Mo2 (LMX) on follower work engagement

M3a.MonXxMo2C <- lmer(
  M ~ X * Mo2 + 
    C1 + C2 + C3 + C4 + C5 + 
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
PROCESS(data8.GroC, y="M", x="X", mods="Mo2", cluster ="MNum", hlm.re.y = "(X| MNum)", center=FALSE,
        covs=cc("C1,C2,C3,C4,C5"))#, file="D2.doc")
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : M
## -  Predictor (X) : X
## -  Mediators (M) : -
## - Moderators (W) : Mo2
## - Covariates (C) : C1, C2, C3, C4, C5
## -   HLM Clusters : MNum
## 
## Formula of Outcome:
## -    M ~ C1 + C2 + C3 + C4 + C5 + X*Mo2 + (X| MNum)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────
##                          (1) M         (2) M       
## ───────────────────────────────────────────────────
## (Intercept)                 0.009         0.008    
##                            (0.027)       (0.027)   
## C1                          0.201 ***     0.201 ***
##                            (0.024)       (0.024)   
## C2                          0.063 *       0.061    
##                            (0.032)       (0.032)   
## C3                          0.063         0.059    
##                            (0.035)       (0.036)   
## C4                          0.013         0.011    
##                            (0.032)       (0.032)   
## C5                         -0.048        -0.046    
##                            (0.037)       (0.037)   
## X                           0.049         0.054    
##                            (0.033)       (0.034)   
## Mo2                                      -0.014    
##                                          (0.024)   
## X:Mo2                                     0.037    
##                                          (0.030)   
## ───────────────────────────────────────────────────
## Marginal R^2                0.084         0.086    
## Conditional R^2             0.084         0.086    
## AIC                      2380.033      2392.962    
## BIC                      2433.419      2456.055    
## Num. obs.                 947           947        
## Num. groups: MNum         104           104        
## Var: MNum (Intercept)       0.000         0.000    
## Var: MNum X                 0.000         0.000    
## Cov: MNum (Intercept) X     0.000         0.000    
## Var: Residual               0.685         0.685    
## ───────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 947 (124 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "M" (Y)
## ───────────────────────────────
##             F df1 df2     p    
## ───────────────────────────────
## X * Mo2  1.51   1 938  .219    
## ───────────────────────────────
## 
## Simple Slopes: "X" (X) ==> "M" (Y)
## ─────────────────────────────────────────────────────────────
##  "Mo2"         Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────
##  -1.135 (- SD)  0.013 (0.045) 0.278  .781     [-0.076, 0.101]
##  0.001 (Mean)   0.055 (0.034) 1.622  .105     [-0.011, 0.120]
##  1.137 (+ SD)   0.096 (0.050) 1.916  .056 .   [-0.002, 0.195]
## ─────────────────────────────────────────────────────────────
#summary(M3a.MonXC)

5.5 Model 3b: Testing the cross-level moderation effect on follower task performance

M3b.MonXxMo2MC <- lmer(
  Y ~ X * Mo2 + 
    M + C1 + C2 + C3 + C4 + C5 + 
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
#summary(M3b.MonXC)

5.6 Model 4a: Testing both moderators (Mo1 and Mo2) on follower work engagement

M4a.MonXxMo12C <- lmer(
  M ~ X * Mo1 + X * Mo2 + 
    C1 + C2 + C3 + C4 + C5 + 
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
PROCESS(data8.GroC, y="M", x="X", mods=cc("Mo1,Mo2"), cluster ="MNum", hlm.re.y = "(X | MNum)", center=FALSE,
        covs=cc("C1,C2,C3,C4,C5"))#, file="D2.doc")
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 2 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Parallel Moderation (2 mods; 2-way)
## -    Outcome (Y) : M
## -  Predictor (X) : X
## -  Mediators (M) : -
## - Moderators (W) : Mo1, Mo2
## - Covariates (C) : C1, C2, C3, C4, C5
## -   HLM Clusters : MNum
## 
## Formula of Outcome:
## -    M ~ C1 + C2 + C3 + C4 + C5 + X*Mo1 + X*Mo2 + (X | MNum)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────
##                          (1) M         (2) M       
## ───────────────────────────────────────────────────
## (Intercept)                 0.009         0.007    
##                            (0.027)       (0.027)   
## C1                          0.201 ***     0.202 ***
##                            (0.024)       (0.024)   
## C2                          0.063 *       0.060    
##                            (0.032)       (0.032)   
## C3                          0.063         0.060    
##                            (0.035)       (0.036)   
## C4                          0.013         0.012    
##                            (0.032)       (0.032)   
## C5                         -0.048        -0.047    
##                            (0.037)       (0.037)   
## X                           0.049         0.055    
##                            (0.033)       (0.034)   
## Mo1                                      -0.031    
##                                          (0.032)   
## Mo2                                      -0.014    
##                                          (0.024)   
## X:Mo1                                    -0.011    
##                                          (0.028)   
## X:Mo2                                     0.037    
##                                          (0.030)   
## ───────────────────────────────────────────────────
## Marginal R^2                0.084         0.087    
## Conditional R^2             0.084         0.087    
## AIC                      2380.033      2406.190    
## BIC                      2433.419      2478.990    
## Num. obs.                 947           947        
## Num. groups: MNum         104           104        
## Var: MNum (Intercept)       0.000         0.000    
## Var: MNum X                 0.000         0.000    
## Cov: MNum (Intercept) X     0.000         0.000    
## Var: Residual               0.685         0.686    
## ───────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Parallel Moderation (2 mods; 2-way) (Model 2)
## Sample Size : 947 (124 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effects on "M" (Y)
## ───────────────────────────────
##             F df1 df2     p    
## ───────────────────────────────
## X * Mo1  0.15   1 936  .698    
## X * Mo2  1.50   1 936  .221    
## ───────────────────────────────
## 
## Simple Slopes: "X" (X) ==> "M" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "Mo2"         "Mo1"         Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  -1.135 (- SD) -0.851 (- SD)  0.022 (0.054) 0.410  .682     [-0.084, 0.128]
##  -1.135 (- SD) -0.011 (Mean)  0.013 (0.046) 0.285  .776     [-0.077, 0.103]
##  -1.135 (- SD) 0.830 (+ SD)   0.004 (0.049) 0.080  .936     [-0.091, 0.099]
##  0.001 (Mean)  -0.851 (- SD)  0.064 (0.044) 1.456  .146     [-0.022, 0.150]
##  0.001 (Mean)  -0.011 (Mean)  0.055 (0.034) 1.613  .107     [-0.012, 0.121]
##  0.001 (Mean)  0.830 (+ SD)   0.046 (0.039) 1.182  .237     [-0.030, 0.121]
##  1.137 (+ SD)  -0.851 (- SD)  0.106 (0.057) 1.850  .065 .   [-0.006, 0.218]
##  1.137 (+ SD)  -0.011 (Mean)  0.097 (0.050) 1.913  .056 .   [-0.002, 0.196]
##  1.137 (+ SD)  0.830 (+ SD)   0.087 (0.054) 1.612  .107     [-0.019, 0.194]
## ───────────────────────────────────────────────────────────────────────────
#summary(M4a.MonXC)

5.7 Model 4b: Testing both moderators (Mo1 and Mo2) on follower task performance

M4b.MonXxMo12MC <- lmer(
  Y ~ X * Mo1 + X * Mo2 + 
    M + C1 + C2 + C3 + C4 + C5 + 
    (X | MNum),  # 随机斜率
  na.action = na.exclude, 
  data = data8.GroC, 
  control = lmerControl(optimizer = "bobyqa")
)
#summary(M4b.MonXC)
model_summary(list(M1.MonXC,M2a.MonXxMo1C,M3a.MonXxMo2C,M4a.MonXxMo12C,M2b.MonXxMo1MC,M3b.MonXxMo2MC,M4b.MonXxMo12MC))
## 
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                          (1) M         (2) M         (3) M         (4) M         (5) Y        (6) Y        (7) Y      
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                 0.013         0.012         0.008         0.007        -0.006       -0.005       -0.006   
##                            (0.026)       (0.026)       (0.027)       (0.027)       (0.025)      (0.025)      (0.025)  
## X                           0.051         0.051         0.054         0.055         0.052        0.039        0.047   
##                            (0.033)       (0.033)       (0.034)       (0.034)       (0.045)      (0.045)      (0.045)  
## C1                          0.201 ***     0.202 ***     0.201 ***     0.202 ***    -0.019       -0.010       -0.010   
##                            (0.023)       (0.023)       (0.024)       (0.024)       (0.023)      (0.024)      (0.024)  
## C2                          0.062 *       0.062 *       0.061         0.060         0.036        0.039        0.038   
##                            (0.031)       (0.031)       (0.032)       (0.032)       (0.030)      (0.030)      (0.030)  
## C3                          0.062         0.063         0.059         0.060        -0.037       -0.040       -0.039   
##                            (0.035)       (0.035)       (0.036)       (0.036)       (0.033)      (0.034)      (0.034)  
## C4                          0.011         0.012         0.011         0.012        -0.031       -0.025       -0.029   
##                            (0.031)       (0.031)       (0.032)       (0.032)       (0.029)      (0.030)      (0.030)  
## C5                         -0.046        -0.048        -0.046        -0.047        -0.110 **    -0.114 **    -0.112 **
##                            (0.036)       (0.036)       (0.037)       (0.037)       (0.035)      (0.035)      (0.035)  
## Mo1                                      -0.033                      -0.031         0.003                     0.011   
##                                          (0.032)                     (0.032)       (0.030)                   (0.031)  
## X:Mo1                                    -0.012                      -0.011        -0.047                    -0.045   
##                                          (0.028)                     (0.028)       (0.027)                   (0.027)  
## Mo2                                                    -0.014        -0.014                      0.018        0.019   
##                                                        (0.024)       (0.024)                    (0.022)      (0.022)  
## X:Mo2                                                   0.037         0.037                      0.041        0.039   
##                                                        (0.030)       (0.030)                    (0.039)      (0.039)  
## M                                                                                   0.034        0.034        0.033   
##                                                                                    (0.031)      (0.032)      (0.032)  
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                0.087         0.089         0.086         0.087         0.031        0.030        0.034   
## Conditional R^2             0.087         0.089         0.086         0.087         0.108        0.105        0.111   
## AIC                      2408.821      2421.914      2392.962      2406.190      1988.659     1960.618     1972.245   
## BIC                      2462.414      2485.252      2456.055      2478.990      2055.239     2026.936     2048.036   
## Num. obs.                 965           965           947           947           859          843          843       
## Num. groups: MNum         106           106           104           104           106          104          104       
## Var: MNum (Intercept)       0.000         0.000         0.000         0.000         0.000        0.000        0.000   
## Var: MNum X                 0.000         0.000         0.000         0.000         0.067        0.065        0.067   
## Cov: MNum (Intercept) X     0.000         0.000         0.000         0.000         0.003        0.002        0.002   
## Var: Residual               0.674         0.674         0.685         0.686         0.517        0.523        0.521   
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.