Exclude participants
df %>%
filter(group == "DYS" | (group == "TD" & is.na(other_diagnoses))) %>%
mutate(ID = as.character(ID)) %>%
filter(!startsWith(ID, "VER")) -> df
df %>%
mutate(
exclude = case_when(
ID == "VER02" ~ 1, # ADHD - university - DYS
ID == "VER04" ~ 1, # ADHD - university - DYS
ID == "MEN12" ~ 1, # discalculia - 3rd - TD
ID == "MEN18" ~ 1, # disgrafia, discalculia - 3rd - TD
ID == "MEN26" ~ 1, # disgrafia - 5th - TD,
ID == "LAE33" ~ 1, # disgrafia, disortografia, 3rd - TD,
### new exclusion criteria:
ID == "LAE38" ~ 1,
ID == "LC19" ~ 1,
ID == "MEN29" ~ 1,
ID == "MEN02" ~ 1,
ID == "MEN10" ~ 1,
ID == "LAE23" ~ 1,
# ID == "MEN35" ~ 1,
TRUE ~ 0
)
) %>%
filter(exclude == 0) %>%
# stricter crtiteria
# filter(group.exclusion != "PR") %>%
# less strict criteria
# filter(group == "DYS" | (group == "TD" & reading.score > -2)) %>%
filter(ID != "VER01" & ID != "VER03") %>%
dplyr::select(-exclude) -> df
Inferential statistics
Forward
# model forward
df %>% mutate_if(is.character, as.factor) %>% mutate(age = scale(age), age = as.double(age)) -> df
glm(forward ~
# group * age,
group +
age,
family = poisson(link = "log"),
data = df) -> m1
|
Â
|
forward
|
|
Predictors
|
Incidence Rate Ratios
|
CI
|
p
|
|
(Intercept)
|
5.97
|
5.10 – 6.93
|
<0.001
|
|
group [TD]
|
1.11
|
0.92 – 1.35
|
0.287
|
|
age
|
1.00
|
0.91 – 1.09
|
0.987
|
|
Observations
|
80
|
|
R2 Nagelkerke
|
0.094
|
Digit span (F): Verbal STM
|
Group
|
Estimate
|
SE
|
CI
|
|
DYS
|
5.97
|
0.08
|
5.12 - 6.96
|
|
TD
|
6.63
|
0.06
|
5.94 - 7.39
|
Digit span F: Verbal STM
|
|
LR Chisq
|
Df
|
Pr(>Chisq)
|
|
group
|
1.14
|
1
|
0.285
|
|
age
|
0.00
|
1
|
0.987
|
|
AIC
|
AICc
|
BIC
|
R2_Nagelkerke
|
RMSE
|
Sigma
|
Score_log
|
Score_spherical
|
|
315.85
|
316.16
|
322.99
|
0.09
|
1.03
|
1
|
-1.94
|
0.11
|
Backward
# model backward
glm(backward ~
group + age,
family = poisson(link = "log"),
data = df) -> m2
|
Â
|
backward
|
|
Predictors
|
Incidence Rate Ratios
|
CI
|
p
|
|
(Intercept)
|
4.12
|
3.42 – 4.93
|
<0.001
|
|
group [TD]
|
1.33
|
1.06 – 1.66
|
0.013
|
|
age
|
1.07
|
0.96 – 1.18
|
0.214
|
|
Observations
|
80
|
|
R2 Nagelkerke
|
0.151
|
Digit span (F): Verbal STM
|
Group
|
Estimate
|
SE
|
CI
|
|
DYS
|
4.12
|
0.09
|
3.43 - 4.95
|
|
TD
|
5.46
|
0.06
|
4.85 - 6.16
|
Digit span F: Verbal STM
|
|
LR Chisq
|
Df
|
Pr(>Chisq)
|
|
group
|
6.33
|
1
|
0.012
|
|
age
|
1.54
|
1
|
0.215
|
|
AIC
|
AICc
|
BIC
|
R2_Nagelkerke
|
RMSE
|
Sigma
|
Score_log
|
Score_spherical
|
|
326.25
|
326.56
|
333.39
|
0.15
|
1.55
|
1
|
-2
|
0.11
|
Composite score
df %>%
rowwise() %>%
mutate(memory = mean(c_across(forward:backward))) %>%
ungroup() -> df
df %>%
lm(formula = memory ~ group + age) -> m3
### Model output
tab_model(m3)
|
Â
|
memory
|
|
Predictors
|
Estimates
|
CI
|
p
|
|
(Intercept)
|
5.04
|
4.64 – 5.43
|
<0.001
|
|
group [TD]
|
1.01
|
0.51 – 1.52
|
<0.001
|
|
age
|
0.16
|
-0.08 – 0.41
|
0.188
|
|
Observations
|
80
|
|
R2 / R2 adjusted
|
0.171 / 0.149
|
Anova(m3, type= "II")
## Anova Table (Type II tests)
##
## Response: memory
## Sum Sq Df F value Pr(>F)
## group 17.087 1 15.8465 0.0001544 ***
## age 1.907 1 1.7683 0.1875149
## Residuals 83.028 77
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Plot
