#data8 =import("https://drive.google.com/uc?id=19uJnllP2hUtm_RwYB_ukjsSnBVvepGjN&export=download")%>%setDT()
#column_names <- names(data8)
#numeric_columns <- column_names[is.na(as.numeric(column_names))]
#HLM_ICC_rWG(data8, group="MNum", icc.var="LPERFV2")
#data8.GroC=group_mean_center(data8, names(data8),by="MNum", add.suffix=".GroC")
#export(data8.GroC,"trust esm variables 8.GroC.sav")
X: Leader delegation=LDLV Level-1 Moderator [Mo1]: Leader emotional exhaustion =LEDV Level-2 Moderator [Mo2]: LMX=LMX
Mediator [M]: Follower work engagement =MWEV Y: Follower task performance(t+1)=LPERFV2
Controls: [C1] Interaction Freuencey=MIFV, [C2] Follower work engagement (t-1)=MWEV0, [C4] Leader delegation(t-1)=LDLV0, [C5] Leader emotional exhaustion (t-1)=LEDV0, [C3] Follower task performance(t-1)=LPERFV0
data8.GroC =import("https://drive.google.com/uc?id=1UflYVV6-fImExSKfGc34e58fwvsxxmZM&export=download")%>%setDT()
data8.GroC=setnames(data8.GroC,
old = c("LDLV.GroC", "LEDV", "MLMXP.GroC", "MWEV.GroC", "LPERF.GroC",
"MIFV.GroC", "MWEV0.GroC", "LDLV0.GroC", "LEDV0.GroC", "LPERFV0.GroC"),
new = c("X", "Mo1", "Mo2", "M", "Y",
"C1", "C2", "C3", "C4", "C5"))
## Error: 在 'old' 中未找到如下列名:[LPERF.GroC]。请考虑设置 skip_absent=TRUE。
data8.GroC =import("https://drive.google.com/uc?id=1UflYVV6-fImExSKfGc34e58fwvsxxmZM&export=download")%>%setDT()
data8.GroC=setnames(data8.GroC,
old = c("LDLV0.GroC", "LEEHV0.GroC", "MLMXP", "MWEV.GroC", "LPERFV2.GroC",
"MIFV0.GroC","MIFV.GroC", "MWEV0.GroC", "LPERFV0.GroC", "LDLV.GroC", "LEDV.GroC"),
new = c("X", "Mo1", "Mo2", "M", "Y",
"C0","C1", "C2", "C3", "C4", "C5"))
X=LDLV0; !leader delegation
C0=MIFV0;
C1=MIFV;
C2=MWEV0;
C3=LPERFV0;
C4=LDLV;
C5=LEDV;
!C6=LPERFV;
!Mo1=LEEHV0; !leader emotionale exhaustion
Mo2=MLMXP; !LSABP;
Me=MWEV;
Y=LPERFV2;
CENTER X(GROUPMEAN);
!CENTER X Mo1(GROUPMEAN);
!Inter1 = X*Mo1;
CENTER Mo2 (GRANDMEAN);
# 定义变量名称列表
variables <- c("X", "Mo1", "Mo2", "M", "Y", "C0", "C1", "C2", "C3", "C4", "C5")
# 创建一个结果列表来存储每个变量的 ICC 和 rWG 结果
results <- list()
# 循环计算每个变量的 ICC 和 rWG
for (var in variables) {
result <- HLM_ICC_rWG(data8.GroC, group = "MNum", icc.var = var)
results[[var]] <- result
}
##
## ------ Sample Size Information ------
##
## Level 1: N = 965 observations ("X")
## Level 2: K = 106 groups ("MNum")
##
## n (group sizes)
## Min. 5.000
## Median 9.000
## Mean 9.104
## Max. 15.000
##
## ------ ICC(1), ICC(2), and rWG ------
##
## ICC variable: "X"
##
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
##
## rWG variable: "X"
##
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ─────────────────────────────────────────────
## rWG 0.000 0.766 0.868 0.825 0.938 1.000
## ─────────────────────────────────────────────
##
##
## ------ Sample Size Information ------
##
## Level 1: N = 965 observations ("Mo1")
## Level 2: K = 106 groups ("MNum")
##
## n (group sizes)
## Min. 5.000
## Median 9.000
## Mean 9.104
## Max. 15.000
##
## ------ ICC(1), ICC(2), and rWG ------
##
## ICC variable: "Mo1"
##
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
##
## rWG variable: "Mo1"
##
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ─────────────────────────────────────────────
## rWG 0.000 0.616 0.853 0.768 0.971 1.000
## ─────────────────────────────────────────────
##
##
## ------ Sample Size Information ------
##
## Level 1: N = 1051 observations ("Mo2")
## Level 2: K = 104 groups ("MNum")
##
## n (group sizes)
## Min. 6.00
## Median 10.00
## Mean 10.11
## Max. 16.00
##
## ------ ICC(1), ICC(2), and rWG ------
##
## ICC variable: "Mo2"
##
## ICC(1) = 1.000 (non-independence of data)
## ICC(2) = 1.000 (reliability of group means)
##
## rWG variable: "Mo2"
##
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ─────────────────────────────────────────────
## rWG 1.000 1.000 1.000 1.000 1.000 1.000
## ─────────────────────────────────────────────
##
##
## ------ Sample Size Information ------
##
## Level 1: N = 1071 observations ("M")
## Level 2: K = 106 groups ("MNum")
##
## n (group sizes)
## Min. 6.0
## Median 10.0
## Mean 10.1
## Max. 16.0
##
## ------ ICC(1), ICC(2), and rWG ------
##
## ICC variable: "M"
##
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
##
## rWG variable: "M"
##
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ─────────────────────────────────────────────
## rWG 0.169 0.819 0.925 0.865 0.972 1.000
## ─────────────────────────────────────────────
##
##
## ------ Sample Size Information ------
##
## Level 1: N = 965 observations ("Y")
## Level 2: K = 106 groups ("MNum")
##
## n (group sizes)
## Min. 5.000
## Median 9.000
## Mean 9.104
## Max. 15.000
##
## ------ ICC(1), ICC(2), and rWG ------
##
## ICC variable: "Y"
##
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
##
## rWG variable: "Y"
##
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ─────────────────────────────────────────────
## rWG 0.240 0.842 0.933 0.881 0.980 1.000
## ─────────────────────────────────────────────
##
##
## ------ Sample Size Information ------
##
## Level 1: N = 965 observations ("C0")
## Level 2: K = 106 groups ("MNum")
##
## n (group sizes)
## Min. 5.000
## Median 9.000
## Mean 9.104
## Max. 15.000
##
## ------ ICC(1), ICC(2), and rWG ------
##
## ICC variable: "C0"
##
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
##
## rWG variable: "C0"
##
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ─────────────────────────────────────────────
## rWG 0.000 0.705 0.868 0.781 0.950 1.000
## ─────────────────────────────────────────────
##
##
## ------ Sample Size Information ------
##
## Level 1: N = 1071 observations ("C1")
## Level 2: K = 106 groups ("MNum")
##
## n (group sizes)
## Min. 6.0
## Median 10.0
## Mean 10.1
## Max. 16.0
##
## ------ ICC(1), ICC(2), and rWG ------
##
## ICC variable: "C1"
##
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
##
## rWG variable: "C1"
##
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ─────────────────────────────────────────────
## rWG 0.000 0.690 0.844 0.772 0.942 1.000
## ─────────────────────────────────────────────
##
##
## ------ Sample Size Information ------
##
## Level 1: N = 965 observations ("C2")
## Level 2: K = 106 groups ("MNum")
##
## n (group sizes)
## Min. 5.000
## Median 9.000
## Mean 9.104
## Max. 15.000
##
## ------ ICC(1), ICC(2), and rWG ------
##
## ICC variable: "C2"
##
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
##
## rWG variable: "C2"
##
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ─────────────────────────────────────────────
## rWG 0.034 0.810 0.926 0.859 0.975 1.000
## ─────────────────────────────────────────────
##
##
## ------ Sample Size Information ------
##
## Level 1: N = 965 observations ("C3")
## Level 2: K = 106 groups ("MNum")
##
## n (group sizes)
## Min. 5.000
## Median 9.000
## Mean 9.104
## Max. 15.000
##
## ------ ICC(1), ICC(2), and rWG ------
##
## ICC variable: "C3"
##
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
##
## rWG variable: "C3"
##
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ─────────────────────────────────────────────
## rWG 0.096 0.857 0.939 0.873 0.980 1.000
## ─────────────────────────────────────────────
##
##
## ------ Sample Size Information ------
##
## Level 1: N = 1071 observations ("C4")
## Level 2: K = 106 groups ("MNum")
##
## n (group sizes)
## Min. 6.0
## Median 10.0
## Mean 10.1
## Max. 16.0
##
## ------ ICC(1), ICC(2), and rWG ------
##
## ICC variable: "C4"
##
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
##
## rWG variable: "C4"
##
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ─────────────────────────────────────────────
## rWG 0.103 0.782 0.866 0.833 0.920 1.000
## ─────────────────────────────────────────────
##
##
## ------ Sample Size Information ------
##
## Level 1: N = 1071 observations ("C5")
## Level 2: K = 106 groups ("MNum")
##
## n (group sizes)
## Min. 6.0
## Median 10.0
## Mean 10.1
## Max. 16.0
##
## ------ ICC(1), ICC(2), and rWG ------
##
## ICC variable: "C5"
##
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
##
## rWG variable: "C5"
##
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ─────────────────────────────────────────────
## rWG 0.000 0.760 0.914 0.845 0.979 1.000
## ─────────────────────────────────────────────
M1.MonX <- lmer(
M ~ X +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M1.MonXC)
Mo1
(Leader emotional exhaustion)M2a.MonXxMo1 <- lmer(
M ~ X * Mo1 +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M2a.MonXC)
M2b.MonXxMo1M <- lmer(
Y ~ X * Mo1 +
M +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M2b.MonXC)
Mo2
(LMX) on follower work engagementM3a.MonXxMo2 <- lmer(
M ~ X * Mo2 +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M3a.MonXC)
M3b.MonXxMo2M <- lmer(
Y ~ X * Mo2 +
M +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
summary(M3b.MonXxMo2M)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Y ~ X * Mo2 + M + (X | MNum)
## Data: data8.GroC
## Control: lmerControl(optimizer = "bobyqa")
##
## REML criterion at convergence: 1950
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.010 -0.402 0.025 0.396 5.717
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## MNum (Intercept) 3.09e-05 0.00555
## X 8.55e-03 0.09245 -1.00
## Residual 5.71e-01 0.75568
## Number of obs: 843, groups: MNum, 104
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -0.1095 0.1221 814.0225 -0.90 0.37
## X -0.0854 0.1567 149.7884 -0.54 0.59
## Mo2 0.0196 0.0230 813.8790 0.85 0.39
## M 0.0376 0.0313 837.8634 1.20 0.23
## X:Mo2 0.0113 0.0301 167.4704 0.38 0.71
##
## Correlation of Fixed Effects:
## (Intr) X Mo2 M
## X -0.027
## Mo2 -0.977 0.026
## M -0.016 0.123 0.016
## X:Mo2 0.026 -0.978 -0.026 -0.138
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
M4a.MonXxMo12 <- lmer(
M ~ X * Mo1 + X * Mo2 +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M4a.MonXC)
M4b.MonXxMo12M <- lmer(
Y ~ X * Mo1 + X * Mo2 +
M +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M4b.MonXC)
model_summary(list(M1.MonX,M2a.MonXxMo1,M3a.MonXxMo2,M4a.MonXxMo12,M2b.MonXxMo1M,M3b.MonXxMo2M,M4b.MonXxMo12M))
##
## Model Summary
##
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (1) M (2) M (3) M (4) M (5) Y (6) Y (7) Y
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept) 0.007 0.006 0.085 0.083 -0.009 -0.110 -0.108
## (0.027) (0.027) (0.129) (0.130) (0.026) (0.122) (0.122)
## X 0.052 0.059 -0.606 *** -0.585 *** -0.015 -0.085 -0.062
## (0.036) (0.036) (0.164) (0.163) (0.033) (0.157) (0.157)
## Mo1 0.002 0.002 -0.048 -0.046
## (0.027) (0.027) (0.025) (0.025)
## X:Mo1 -0.030 -0.026 -0.047 * -0.047 *
## (0.024) (0.024) (0.022) (0.023)
## Mo2 -0.016 -0.016 0.020 0.019
## (0.024) (0.024) (0.023) (0.023)
## X:Mo2 0.128 *** 0.126 *** 0.011 0.009
## (0.031) (0.031) (0.030) (0.030)
## M 0.035 0.038 0.036
## (0.031) (0.031) (0.031)
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2 0.003 0.004 0.022 0.023 0.012 0.004 0.013
## Conditional R^2 0.018 0.016 0.031 0.030 0.023 0.015 0.024
## AIC 2458.597 2472.100 2423.185 2436.960 1991.007 1968.254 1976.025
## BIC 2487.830 2511.077 2462.012 2485.493 2033.809 2010.887 2028.132
## Num. obs. 965 965 947 947 859 843 843
## Num. groups: MNum 106 106 104 104 106 104 104
## Var: MNum (Intercept) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## Var: MNum X 0.016 0.012 0.009 0.007 0.009 0.009 0.009
## Cov: MNum (Intercept) X 0.000 0.000 0.000 0.000 0.000 -0.001 0.000
## Var: Residual 0.722 0.725 0.724 0.726 0.561 0.571 0.567
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
M1.MonXC <- lmer(
M ~ X + C0+C1 + C2 + C3 + C4 + C5 +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M1.MonXC)
Mo1
(Leader emotional exhaustion)M2a.MonXxMo1C <- lmer(
M ~ X * Mo1 +
C0+C1 + C2 + C3 + C4 + C5 +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M2a.MonXC)
M2b.MonXxMo1MC <- lmer(
Y ~ X * Mo1 +
M + C0+C1 + C2 + C3 + C4 + C5 +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M2b.MonXC)
Mo2
(LMX) on follower work engagementM3a.MonXxMo2C <- lmer(
M ~ X * Mo2 +
C0+C1 + C2 + C3 + C4 + C5 +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M3a.MonXC)
M3b.MonXxMo2MC <- lmer(
Y ~ X * Mo2 +
M + C0+C1 + C2 + C3 + C4 + C5 +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M3b.MonXC)
M4a.MonXxMo12C <- lmer(
M ~ X * Mo1 + X * Mo2 +
C0+C1 + C2 + C3 + C4 + C5 +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M4a.MonXC)
M4b.MonXxMo12MC <- lmer(
Y ~ X * Mo1 + X * Mo2 +
M + C0+C1 + C2 + C3 + C4 + C5 +
(X | MNum), # 随机斜率
na.action = na.exclude,
data = data8.GroC,
control = lmerControl(optimizer = "bobyqa")
)
#summary(M4b.MonXC)
model_summary(list(M1.MonXC,M2a.MonXxMo1C,M3a.MonXxMo2C,M4a.MonXxMo12C,M2b.MonXxMo1MC,M3b.MonXxMo2MC,M4b.MonXxMo12MC))
##
## Model Summary
##
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (1) M (2) M (3) M (4) M (5) Y (6) Y (7) Y
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept) 0.013 0.011 0.085 0.082 -0.009 -0.105 -0.103
## (0.026) (0.026) (0.125) (0.126) (0.026) (0.122) (0.122)
## X 0.063 0.071 * -0.390 * -0.373 * 0.014 -0.012 0.019
## (0.035) (0.036) (0.157) (0.157) (0.036) (0.161) (0.161)
## C0 0.007 0.006 0.010 0.010 -0.025 -0.024 -0.024
## (0.024) (0.024) (0.024) (0.024) (0.023) (0.024) (0.024)
## C1 0.201 *** 0.203 *** 0.193 *** 0.195 *** -0.028 -0.020 -0.021
## (0.023) (0.023) (0.024) (0.024) (0.024) (0.024) (0.024)
## C2 0.060 0.060 0.054 0.054 0.060 0.059 0.062
## (0.033) (0.033) (0.033) (0.033) (0.032) (0.032) (0.032)
## C3 -0.050 -0.049 -0.032 -0.032 -0.077 * -0.069 -0.078 *
## (0.036) (0.036) (0.037) (0.037) (0.036) (0.036) (0.036)
## C4 0.049 0.046 0.042 0.039 0.004 -0.001 -0.001
## (0.033) (0.033) (0.033) (0.034) (0.032) (0.033) (0.033)
## C5 -0.032 -0.031 -0.030 -0.029 0.005 0.002 0.012
## (0.031) (0.032) (0.032) (0.032) (0.031) (0.031) (0.031)
## Mo1 0.010 0.011 -0.058 * -0.056 *
## (0.026) (0.027) (0.025) (0.026)
## X:Mo1 -0.033 -0.030 -0.047 * -0.047 *
## (0.023) (0.023) (0.023) (0.023)
## Mo2 -0.015 -0.014 0.019 0.018
## (0.024) (0.024) (0.023) (0.023)
## X:Mo2 0.088 ** 0.086 ** 0.002 -0.001
## (0.029) (0.029) (0.030) (0.030)
## M 0.044 0.045 0.045
## (0.032) (0.033) (0.033)
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2 0.088 0.090 0.094 0.095 0.023 0.014 0.024
## Conditional R^2 0.088 0.090 0.094 0.095 0.033 0.024 0.034
## AIC 2415.416 2428.343 2392.466 2405.716 2024.569 2003.462 2009.627
## BIC 2473.882 2496.553 2460.412 2483.369 2095.906 2074.516 2090.155
## Num. obs. 965 965 947 947 859 843 843
## Num. groups: MNum 106 106 104 104 106 104 104
## Var: MNum (Intercept) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## Var: MNum X 0.000 0.000 0.000 0.000 0.008 0.008 0.008
## Cov: MNum (Intercept) X 0.000 0.000 0.000 0.000 -0.000 -0.001 0.000
## Var: Residual 0.674 0.674 0.680 0.680 0.559 0.570 0.565
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.