# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("MCD", "ISRG", "KHC", "FIS", "GOOG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2024-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "FIS" "GOOG" "ISRG" "KHC" "MCD"
# weights
weights <- c(0.2, 0.2, 0.2, 0.2, 0.2)
weights
## [1] 0.2 0.2 0.2 0.2 0.2
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 FIS 0.2
## 2 GOOG 0.2
## 3 ISRG 0.2
## 4 KHC 0.2
## 5 MCD 0.2
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 143 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0731
## 2 2013-02-28 -0.00635
## 3 2013-03-28 0.00987
## 4 2013-04-30 0.0247
## 5 2013-05-31 0.0166
## 6 2013-06-28 0.00208
## 7 2013-07-31 -0.0519
## 8 2013-08-30 -0.0104
## 9 2013-09-30 0.0149
## 10 2013-10-31 0.0403
## # ℹ 133 more rows
# Get market returns
market_returns_tbl <- tq_get("MCD",
get = "stock.prices",
from = "2012-12-31",
to = "2024-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
# Combine market returns with portfolio returns
portfolio_market_returns_tbl <- portfolio_returns_tbl %>%
# Add market returns
mutate(market_returns = market_returns_tbl %>% pull(returns))
# 3 Calculating CAPM Beta ----
# A complete list of functions for performance_fun()
# tq_performance_fun_options()
portfolio_market_returns_tbl %>%
tq_performance(Ra = returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.592
# Figure 8.2 Scatter with regression line from ggplot ----
portfolio_market_returns_tbl %>%
ggplot(aes(market_returns, returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(x = "market returns",
y = "portfolio returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
My portfolio is moderately sensitive to the market. With a beta of 0.592, it tends to move in the same direction as the overall market but at a lesser rate. This lower sensitivity to market fluctuations suggests a relatively stable and less volatile investment portfolio. I would say the plot does a really good job visually confirming the beta coefficient I calculated, as it shows no out of the ordinary highs or lows, usually associated with a beta of ~.6.