Code
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.1
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Code
requireNamespace("plotly")
Loading required namespace: plotly
Code
Loading required namespace: DT
Code
ipeds.df <- readRDS("./data/ipeds_completions_2000_2023.RData")
Code
ipeds.df %>%
filter(field_cip %in% c("25.0101","25.9999")) %>% # library sceince
filter(award_level %in% c(7)) %>% # masters level
group_by(year) %>%
summarise(tot_male = sum(tot_awards_male, na.rm= TRUE),
tot_female= sum(tot_awards_female, na.rm=TRUE),
tot_female_white = sum(tot_awards_female_white, na.rm=TRUE),
tot_male_white = sum(tot_awards_male_white, na.rm=TRUE),
tot_female_black = sum(tot_awards_female_black, na.rm=TRUE),
tot_male_black = sum(tot_awards_male_black, na.rm=TRUE),
tot_grand = tot_male+tot_female,
p_female = tot_female/tot_grand,
p_male = 1-p_female,
p_black = (tot_male_black+tot_female_black)/tot_grand,
p_white = (tot_male_white+tot_female_white)/tot_grand,
p_otherrace = 1-p_black-p_white
) -> ipeds_lib_tot_year.df
Percentage of MLIS Degrees Awarded to Black Students Over time
Code
{ipeds_lib_tot_year.df %>%
ggplot(aes(x=year,y=p_black)) +
geom_line()
} %>% plotly::ggplotly()
Code
{ipeds_lib_tot_year.df %>%
ggplot(aes(x=year,y=p_otherrace)) +
geom_line()} %>% plotly::ggplotly()
Total MLIS Degrees Awarded by Year, Gender & Race (3 categories)
Code
ipeds_lib_tot_year.df %>%
DT::datatable(extensions = 'Buttons',
options = list(dom = 'Bfrltip',
buttons = c('csv')),)