#Class Excercise 16: Chapter 17

:Project Objective

Use the naive method to answer question 1
Use the smoothing approach to answer question 2
Use the linear trend approach to answer question3 

:Question 1

:Install and load required libraries

library(Metrics)
#Time Series Data
week <-  1:6 #This is the independent variable- time
values <- c(17,13,15,11,17,14) #dependent variable 

:Part A. Most Recent Vaule as Forecast

forecast_a <-  values [-length(values)] # Excludes the last value 
actual_a <-  values[-1] #Exclude the first sale 
mse_a <- mean((actual_a- forecast_a)^2)
mse_a #Mean square error is 16.2
## [1] 16.2
mae <- mae(forecast_a ,actual_a ) # The mean absolute error is
mae
## [1] 3.8
mean(abs((actual_a - forecast_a) / actual_a) * 100)
## [1] 27.43778

:Forecast the sales for week 11

forecast_week7_a <- tail(values, 1)
forecast_week7_a #Interpretation: Forecast for week 7 is 14
## [1] 14

:Part B. Average all of the Data as Forecast

cumulative_averages <- cumsum(values[-length(values)]) / (1:(length(values) -1))
cumulative_averages
## [1] 17.0 15.0 15.0 14.0 14.6
forecast_b <-  cumulative_averages
actual_b <- values[-1] #Exclude the first value
mse_b <- mean((actual_b - forecast_b)^2)
mse_b # Mean square error is 8.272
## [1] 8.272
#Forecast the sales for week 7
forecast_week7_b <- mean(values) #Average of all weeks as forecast for week 7
forecast_week7_b
## [1] 14.5
#Interpretation for week 7 is 14.5

:Part C. Comparison

better_method <- ifelse(mse_a < mse_b, "Most Recent Value", "Average of all Data")

#Results
list(
  MSE_Most_Recent_Value = mse_a,
  Forecast_Week7_Most_Recent = forecast_week7_a,
  MSE_Average = mse_b,
  Forecast_Week7_Average = forecast_week7_b,
  Better_Method= better_method
)
## $MSE_Most_Recent_Value
## [1] 16.2
## 
## $Forecast_Week7_Most_Recent
## [1] 14
## 
## $MSE_Average
## [1] 8.272
## 
## $Forecast_Week7_Average
## [1] 14.5
## 
## $Better_Method
## [1] "Average of all Data"

#** Question 2 : Moving Average and Exponential Smoothing Aproach**

:Part A. Moving Average

:Load the libraries

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(zoo)
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric

:Import the Data

df <- data.frame(month=c(1,2,3,4,5,6,7,8,9,10,11,12),
                 contracts=c(240,352,230,260,280,322,220,310,240,310,240,230))

:Descriptive statistics

summary(df)
##      month         contracts    
##  Min.   : 1.00   Min.   :220.0  
##  1st Qu.: 3.75   1st Qu.:237.5  
##  Median : 6.50   Median :250.0  
##  Mean   : 6.50   Mean   :269.5  
##  3rd Qu.: 9.25   3rd Qu.:310.0  
##  Max.   :12.00   Max.   :352.0
#Interpretation : The average value of Alabama building contracts

:Time series plot

plot(df$month, df$contracts, type="o", col="red", xlab="month", ylab="contracts",
     main= "Alabama Buiding Contracts Plot")

# Interpretation: The timer series plot exhibits a horizontal pattern

:Manually calculate the three-week moving average

df$avg_contracts3 <- c(NA, NA, NA,
                       (df$contracts[1] + df$contracts[2] + df$contracts[3]) / 3,
                       (df$contracts[2] + df$contracts[3] + df$contracts[4])/ 3,
                       (df$contracts[3] + df$contracts[4] + df$contracts[5])/ 3,
                       (df$contracts[4] + df$contracts[5] + df$contracts[6])/ 3,
                       (df$contracts[5] + df$contracts[6] + df$contracts[7])/ 3,
                       (df$contracts[7] + df$contracts[8] + df$contracts[9])/ 3,
                       (df$contracts[8] + df$contracts[9] + df$contracts[10])/ 3,
                       (df$contracts[9] + df$contracts[10] + df$contracts[11])/ 3,
                       (df$contracts[10] + df$contracts[11] + df$contracts[12])/ 3
                       )

###:Calculate the squared errors (only for months where moving average is available)

df <- df %>%
  mutate(
    squared_error= ifelse(is.na(avg_contracts3), NA, (contracts- avg_contracts3)^2)
  )

:Compute MSE (excluding the initial weeks with NA)

mse <- mean(df$squared_error, na.rm = TRUE)
mse  # Output the MSE - 1395.704
## [1] 1395.704

:#Part B. Exponential Smoothing

alpha <- 0.2
exp_smooth <- rep(NA, length(df$contracts))
exp_smooth[1] <- df$contracts[1] #starting point
for(i in 2: length(df$contracts)) {
  exp_smooth[i] <- alpha * df$contracts[i-1] + (1-alpha) * exp_smooth[i-1]
}
mse_exp_smooth <- mean((df$contracts[2:12] - exp_smooth[2:12]) ^2)
mse_exp_smooth # OUTPUT THE MSE - 2593.763
## [1] 2593.762

:Comparison

better_method <- ifelse(mse < mse_exp_smooth, "Three-Month Moving Average", "exponential
smoothing")

:Results

list(
  MSE_Moving_Average = mse,
  MSE_Exponential_Smoothing = mse_exp_smooth, 
  Better_Method = better_method
)
## $MSE_Moving_Average
## [1] 1395.704
## 
## $MSE_Exponential_Smoothing
## [1] 2593.762
## 
## $Better_Method
## [1] "Three-Month Moving Average"

Part 3 Method 3: Linear Trend Regression Aproach

###:Load the libraries

library(readxl) #use this library to import excel files
library(ggplot2)

:Load the data and clean

mortgage_df <- read_excel("mort.xlsx")
mort_df <- subset(mortgage_df, select= -(Year)) 

:Descriptive Statistics

summary(mort_df)
##      Period      Interest_Rate  
##  Min.   : 1.00   Min.   :2.958  
##  1st Qu.: 6.75   1st Qu.:3.966  
##  Median :12.50   Median :4.863  
##  Mean   :12.50   Mean   :5.084  
##  3rd Qu.:18.25   3rd Qu.:6.105  
##  Max.   :24.00   Max.   :8.053
# On average the interest rate (%) for a 30-year fixed-rate mortgage
#over a 20-year period is ~ 5.08

:Construct a time series plot

ggplot(mort_df, aes(x= Period, y= Interest_Rate))+
  geom_line() +
  geom_point() +
  xlab("Period") +
  ylab("Interest_Rate") +
  ggtitle(" Time Series Plot of Interest Rates")

#Interpretation : I observe a decreasing pattern or trend in the time series plot

:Develop a linear trend equation

mortgage_model <- lm(Interest_Rate ~ Period, data= mortgage_df)
summary(mortgage_model)
## 
## Call:
## lm(formula = Interest_Rate ~ Period, data = mortgage_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3622 -0.7212 -0.2823  0.5015  3.1847 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.69541    0.43776  15.295 3.32e-13 ***
## Period      -0.12890    0.03064  -4.207 0.000364 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.039 on 22 degrees of freedom
## Multiple R-squared:  0.4459, Adjusted R-squared:  0.4207 
## F-statistic:  17.7 on 1 and 22 DF,  p-value: 0.0003637
# Result- linear trend equation: interest rates = 6.70 + -0.13*Period  or
# T_hat =  6.70 + -0.13*t
# The R-square is 0.45
#The overall model is significant as the p-value < 0.05

:To find the MSE and values

# Calculate the fitted values from the model
mort_df$predicted_mortgage <- predict(mortgage_model)

:Calculate the residuals

mort_df$residuals <-  mort_df$Interest_Rate - mort_df$predicted_mortgage

:Calculate the mwan squared error (MSE)

mse_mortgage <-  mean(mort_df$residuals^2)
cat("Mean Squared Error(MSE):", mse, "")
## Mean Squared Error(MSE): 1395.704
forecast_interest_rate_period_25 <- predict(mortgage_model, newdata= data.frame(Period=25))
forecast_interest_rate_period_25
##        1 
## 3.472942