###install.packages(“ggplot2”)
#Load the libraries
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.4.2
library(readxl)
## Warning: package 'readxl' was built under R version 4.4.2
# Load the data
df <- read_excel(file.choose())
###Step 3: Summarize the data
summary(df)
## Year Period Interest_Rate
## Min. :2000-01-01 00:00:00 Min. : 1.00 Min. :2.958
## 1st Qu.:2005-10-01 18:00:00 1st Qu.: 6.75 1st Qu.:3.966
## Median :2011-07-02 12:00:00 Median :12.50 Median :4.863
## Mean :2011-07-02 18:00:00 Mean :12.50 Mean :5.084
## 3rd Qu.:2017-04-02 06:00:00 3rd Qu.:18.25 3rd Qu.:6.105
## Max. :2023-01-01 00:00:00 Max. :24.00 Max. :8.053
Interpretation: On average the interest rate for a 30-year-fixed-rate mortgage over a 20-year period is 5.08
ggplot(df, aes(x = Period, y = Interest_Rate)) +
geom_line() +
geom_point() +
xlab("Period") +
ylab("Interest Rate (%)") +
ggtitle("Time Series Plot of Interest Rate")
Interpretation: Interpretation:We observe a general downward trend in interest rates over the observed periods, with noticeable fluctuations and a sharp increase toward the end.
model <- lm(Interest_Rate ~ Period, data = df)
summary(model)
##
## Call:
## lm(formula = Interest_Rate ~ Period, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3622 -0.7212 -0.2823 0.5015 3.1847
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.69541 0.43776 15.295 3.32e-13 ***
## Period -0.12890 0.03064 -4.207 0.000364 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.039 on 22 degrees of freedom
## Multiple R-squared: 0.4459, Adjusted R-squared: 0.4207
## F-statistic: 17.7 on 1 and 22 DF, p-value: 0.0003637
Interpretation: Result - estimated linear trend equation: Interest_rate = 6.69 - 0.13*Period
The R-square is 0.45
The overall model is significant as p-value < 0.05
df$predicted_interest_rate <- predict(model)
df$residuals <- df$Interest_Rate - df$predicted_interest_rate
mse <- mean(df$residuals^2)
cat("Mean Squared Error (MSE):", mse, "\n")
## Mean Squared Error (MSE): 0.989475
df$percentage_error <- abs(df$residuals / df$Interest_Rate) * 100
mape <- mean(df$percentage_error)
cat("Mean Absolute Percentage Error (MAPE):", mape, "%\n")
## Mean Absolute Percentage Error (MAPE): 15.79088 %
Interpretation:
Mean Absolute Percentage Error (MAPE): 15.79088 %
Mean Squared Error (MSE): 0.989475
forecast_period_25 <- predict (model, newdata = data.frame(Period = 25))
forecast_period_25
## 1
## 3.472942
Interpretation: The forecasted amount of interest rate in period 25 is 3.47