##Week 1 2 3 4 5 6 ## Value 17 13 15 11 17 14
# Time Series Data
week <- 1:6 # independant variable
values <- c(17, 13, 15, 11, 17, 14) # dependant variable
forecast <- values[-length(values)]
actual <- values[-1]
mae <- mean(abs(actual - forecast))
mae
## [1] 3.8
mse <- mean((actual - forecast)^2)
mse
## [1] 16.2
errors <- (abs(actual - forecast) / actual) * 100
mape <- mean(errors)
mape
## [1] 27.43778
forcast_week7 <- tail(values, 1)
forcast_week7
## [1] 14
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(zoo)
## Warning: package 'zoo' was built under R version 4.4.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
# Time Series Data #
df <- data.frame(month = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),
mdollars = c(240, 352, 230, 260, 280, 322, 220, 310, 240, 310, 240, 230))
summary(df)
## month mdollars
## Min. : 1.00 Min. :220.0
## 1st Qu.: 3.75 1st Qu.:237.5
## Median : 6.50 Median :250.0
## Mean : 6.50 Mean :269.5
## 3rd Qu.: 9.25 3rd Qu.:310.0
## Max. :12.00 Max. :352.0
plot(df$month, df$mdollars, type = "o", col = "red", xlab = "Month", ylab =
"Millions of Dollars", main = "Alabama Building Contracts")
## Interpretation
The Time Series Plot exhibits a horizontal Pattern around the mean.
df$avg_mdollars3 <- c(NA, NA, NA,
(df$mdollars[1] + df$mdollars[2] + df$mdollars[3])/3,
(df$mdollars[2] + df$mdollars[3] + df$mdollars[4])/3,
(df$mdollars[3] + df$mdollars[4] + df$mdollars[5])/3,
(df$mdollars[4] + df$mdollars[5] + df$mdollars[6])/3,
(df$mdollars[5] + df$mdollars[6] + df$mdollars[7])/3,
(df$mdollars[6] + df$mdollars[7] + df$mdollars[8])/3,
(df$mdollars[7] + df$mdollars[8] + df$mdollars[9])/3,
(df$mdollars[8] + df$mdollars[9] + df$mdollars[10])/3,
(df$mdollars[9] + df$mdollars[10] + df$mdollars[11])/3)
df <- df %>%
mutate(
squared_error = ifelse(is.na(avg_mdollars3), NA, (mdollars - avg_mdollars3)^2)
)
mse <- mean(df$squared_error, na.rm = TRUE)
mse # Our MSE is 2040.44
## [1] 2040.444
alpha <- 0.2
exp_smooth <- rep(NA, length(df$mdollars))
exp_smooth[1] <- df$mdollars[1]
for(i in 2: length(df$mdollars)) {
exp_smooth[i] <-alpha * df$mdollars[i-1] + (1-alpha) * exp_smooth[i-1]
}
mse_exp_smooth <- mean((df$mdollars[2:12] - exp_smooth[2:12])^2)
mse_exp_smooth #Output for MSE is 2593.76
## [1] 2593.762
better_method <- ifelse(mse < mse_exp_smooth, "Three Month Moving Average", "Exponential Smoothing")
list(
MSE_Moving_Average = mse,
MSE_Exponential_Smoothing = mse_exp_smooth,
Better_Method = better_method
)
## $MSE_Moving_Average
## [1] 2040.444
##
## $MSE_Exponential_Smoothing
## [1] 2593.762
##
## $Better_Method
## [1] "Three Month Moving Average"
library("readxl")
library(ggplot2)
df2 <- read_excel(file.choose())
summary(df2)
## Year Period Rate
## Min. :2000-01-01 00:00:00 Min. : 1.00 Min. :2.958
## 1st Qu.:2005-10-01 18:00:00 1st Qu.: 6.75 1st Qu.:3.966
## Median :2011-07-02 12:00:00 Median :12.50 Median :4.863
## Mean :2011-07-02 18:00:00 Mean :12.50 Mean :5.084
## 3rd Qu.:2017-04-02 06:00:00 3rd Qu.:18.25 3rd Qu.:6.105
## Max. :2023-01-01 00:00:00 Max. :24.00 Max. :8.053
ggplot(df2, aes(x = Period, y = Rate)) +
geom_line() +
geom_point() +
xlab("Period") +
ylab("Interest Rate") +
ggtitle("Time Series Morgage Interest Rate Yearly")
## Interpretation
We observe a decreasing pattern in the Time Series Trend as seen in the plot
model <- lm(Rate ~ Period, data = df2)
summary(model)
##
## Call:
## lm(formula = Rate ~ Period, data = df2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3622 -0.7212 -0.2823 0.5015 3.1847
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.69541 0.43776 15.295 3.32e-13 ***
## Period -0.12890 0.03064 -4.207 0.000364 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.039 on 22 degrees of freedom
## Multiple R-squared: 0.4459, Adjusted R-squared: 0.4207
## F-statistic: 17.7 on 1 and 22 DF, p-value: 0.0003637
Regression Model: 6.70 + (-0.13)*Period
R-Squared: 0.45
The Overall Model is Significant as p-value (0.00) is less than 0.05
df2$Predicted_Rate <- predict(model)
df2$Residuals <- df2$Rate - df2$Predicted_Rate
mse2 <- mean(df2$Residuals^2)
cat("Mean Squared Error (MSE):", mse2, "\n")
## Mean Squared Error (MSE): 0.989475
df2$Percentage_Error <- abs(df2$Residuals / df2$Rate) * 100
mape2 <- mean(df2$Percentage_Error)
cat("Mean Absolute Percentage Error (MAPE):", mape2, "%\n")
## Mean Absolute Percentage Error (MAPE): 15.79088 %
forecast_period_25 <- predict(model, newdata = data.frame(Period = 25))
forecast_period_25
## 1
## 3.472942
In year 2025 the Mortgage Interest Rate will increase by 3.47.