Human Mortality Database

This is an initial exploration of the Human Mortality Database, which is at https://www.mortality.org/.

Download the entire database and place it in your current working directory.

Setup

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(plotly)
## Warning: package 'plotly' was built under R version 4.4.2
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout

USAM Data

Load the data for USA males. Add a variable country and set it to “USA”.

Select country, Year, Age and qx.

Make Age numeric.

Eliminate any missing data.

Solution

USAM <- read_table("C:/Users/Xxore/Downloads/USA.mltper_1x1.txt", skip = 2) %>% 
  mutate(country = "USA") %>% 
  select(country, Year, Age, qx) %>% 
  filter(Age != "110+") %>% 
  mutate(Age = as.numeric(Age)) %>% 
  filter(Age < 85) %>% 
  rename(male_prob_death = qx) %>% 
  drop_na()
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   Year = col_double(),
##   Age = col_character(),
##   mx = col_double(),
##   qx = col_double(),
##   ax = col_double(),
##   lx = col_double(),
##   dx = col_double(),
##   Lx = col_double(),
##   Tx = col_double(),
##   ex = col_double()
## )
summary(USAM)
##    country               Year           Age     male_prob_death  
##  Length:7565        Min.   :1933   Min.   : 0   Min.   :0.00010  
##  Class :character   1st Qu.:1955   1st Qu.:21   1st Qu.:0.00167  
##  Mode  :character   Median :1977   Median :42   Median :0.00457  
##                     Mean   :1977   Mean   :42   Mean   :0.01991  
##                     3rd Qu.:1999   3rd Qu.:63   3rd Qu.:0.02441  
##                     Max.   :2021   Max.   :84   Max.   :0.17284

Canada

Do the same for Canada.

Solution

CANM <- read_table("C:/Users/Xxore/Downloads/CAN.mltper_1x1.txt", skip = 2) %>% 
  mutate(country = "Canada") %>% 
  select(country, Year, Age, qx) %>% 
  filter(Age != "110+") %>%  # Exclude non-numeric entries
  mutate(Age = as.numeric(Age)) %>% 
  filter(Age < 85) %>% 
  rename(male_prob_death = qx) %>%
  drop_na()
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   Year = col_double(),
##   Age = col_character(),
##   mx = col_double(),
##   qx = col_double(),
##   ax = col_double(),
##   lx = col_double(),
##   dx = col_double(),
##   Lx = col_double(),
##   Tx = col_double(),
##   ex = col_double()
## )
summary(CANM)
##    country               Year           Age     male_prob_death  
##  Length:8670        Min.   :1921   Min.   : 0   Min.   :0.00005  
##  Class :character   1st Qu.:1946   1st Qu.:21   1st Qu.:0.00141  
##  Mode  :character   Median :1972   Median :42   Median :0.00386  
##                     Mean   :1972   Mean   :42   Mean   :0.01870  
##                     3rd Qu.:1997   3rd Qu.:63   3rd Qu.:0.02082  
##                     Max.   :2022   Max.   :84   Max.   :0.18114

Combine

Combine the two dataframes into USA_CANM using rbind().

Solution

USA_CANM <- rbind(USAM, CANM)
summary(USA_CANM)
##    country               Year           Age     male_prob_death  
##  Length:16235       Min.   :1921   Min.   : 0   Min.   :0.00005  
##  Class :character   1st Qu.:1950   1st Qu.:21   1st Qu.:0.00152  
##  Mode  :character   Median :1974   Median :42   Median :0.00411  
##                     Mean   :1974   Mean   :42   Mean   :0.01926  
##                     3rd Qu.:1998   3rd Qu.:63   3rd Qu.:0.02260  
##                     Max.   :2022   Max.   :84   Max.   :0.18114

Male Infant Mortality USA and Canada

Produce a graph showing the probability of male death at age 0 for the USA and Canada. Use color to see two time-series plots. Create this graph beginning in 1940.

Solutiom

USA_CANM %>% 
  filter(Age == 0 & Year > 1940) %>% 
  ggplot(aes(x = Year, y = male_prob_death, color = country)) +
  geom_point() +
  ggtitle("Male Infant Mortality - USA and Canada") +
  xlab("Year") +
  ylab("Probability of Death (Age 0)") +
  theme_minimal()

USA/Canada 2

Create a graph comparing USA and Canadian male mortality at age 79.

Solution

USA_CANM %>% 
  filter(Age == 79 & Year > 1940) %>% 
  ggplot(aes(x = Year, y = male_prob_death, color = country)) +
  geom_point() +
  ggtitle("Age 79 Male Mortality - USA and Canada")

Task 1

Copy and modify the code above to produce USAF, CANF and USA_CANF. Do summaries to verify your work.

# Load USA Female Data
USAF <- read_table("C:/Users/Xxore/Downloads/USA.fltper_1x1.txt", skip = 2) %>% 
  mutate(country = "USA") %>% 
  select(country, Year, Age, qx) %>% 
  filter(Age != "110+") %>%  
  mutate(Age = as.numeric(Age)) %>% 
  filter(Age < 85) %>% 
  rename(female_prob_death = qx) %>% 
  drop_na()
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   Year = col_double(),
##   Age = col_character(),
##   mx = col_double(),
##   qx = col_double(),
##   ax = col_double(),
##   lx = col_double(),
##   dx = col_double(),
##   Lx = col_double(),
##   Tx = col_double(),
##   ex = col_double()
## )
summary(USAF)
##    country               Year           Age     female_prob_death
##  Length:7565        Min.   :1933   Min.   : 0   Min.   :0.00008  
##  Class :character   1st Qu.:1955   1st Qu.:21   1st Qu.:0.00073  
##  Mode  :character   Median :1977   Median :42   Median :0.00298  
##                     Mean   :1977   Mean   :42   Mean   :0.01348  
##                     3rd Qu.:1999   3rd Qu.:63   3rd Qu.:0.01444  
##                     Max.   :2021   Max.   :84   Max.   :0.15084
# Load Canada Female Data
CANF <- read_table("C:/Users/Xxore/Downloads/CAN.fltper_1x1.txt", skip = 2) %>% 
  mutate(country = "Canada") %>% 
  select(country, Year, Age, qx) %>% 
  filter(Age != "110+") %>%  
  mutate(Age = as.numeric(Age)) %>% 
  filter(Age < 85) %>% 
  rename(female_prob_death = qx) %>% 
  drop_na()
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   Year = col_double(),
##   Age = col_character(),
##   mx = col_double(),
##   qx = col_double(),
##   ax = col_double(),
##   lx = col_double(),
##   dx = col_double(),
##   Lx = col_double(),
##   Tx = col_double(),
##   ex = col_double()
## )
summary(CANF)
##    country               Year           Age     female_prob_death 
##  Length:8670        Min.   :1921   Min.   : 0   Min.   :0.000030  
##  Class :character   1st Qu.:1946   1st Qu.:21   1st Qu.:0.000650  
##  Mode  :character   Median :1972   Median :42   Median :0.003125  
##                     Mean   :1972   Mean   :42   Mean   :0.013531  
##                     3rd Qu.:1997   3rd Qu.:63   3rd Qu.:0.013325  
##                     Max.   :2022   Max.   :84   Max.   :0.159520
# Combine Female Data
USA_CANF <- rbind(USAF, CANF)
summary(USA_CANF)
##    country               Year           Age     female_prob_death 
##  Length:16235       Min.   :1921   Min.   : 0   Min.   :0.000030  
##  Class :character   1st Qu.:1950   1st Qu.:21   1st Qu.:0.000695  
##  Mode  :character   Median :1974   Median :42   Median :0.003070  
##                     Mean   :1974   Mean   :42   Mean   :0.013506  
##                     3rd Qu.:1998   3rd Qu.:63   3rd Qu.:0.013720  
##                     Max.   :2022   Max.   :84   Max.   :0.159520

Task 2

Redo the graphs you produced above for females in the USA and Canada. Do you see the same patterns?

USA_CANF %>% 
  filter(Age == 0 & Year > 1940) %>% 
  ggplot(aes(x = Year, y = female_prob_death, color = country)) +
  geom_point() +
  ggtitle("Female Infant Mortality - USA and Canada")

USA_CANF %>% 
  filter(Age == 79 & Year > 1940) %>% 
  ggplot(aes(x = Year, y = female_prob_death, color = country)) +
  geom_point() +
  ggtitle("Age 79 Female Mortality - USA and Canada")

Task 3: Male + Female

Combine USAM and USAF into USA. This new dataframe will have both male and female probabilities of death. Run a summary to verify your work.

USA <- USAM %>% 
  left_join(USAF, by = c("Year", "Age", "country")) %>% 
  drop_na()
summary(USA)
##    country               Year           Age     male_prob_death  
##  Length:7565        Min.   :1933   Min.   : 0   Min.   :0.00010  
##  Class :character   1st Qu.:1955   1st Qu.:21   1st Qu.:0.00167  
##  Mode  :character   Median :1977   Median :42   Median :0.00457  
##                     Mean   :1977   Mean   :42   Mean   :0.01991  
##                     3rd Qu.:1999   3rd Qu.:63   3rd Qu.:0.02441  
##                     Max.   :2021   Max.   :84   Max.   :0.17284  
##  female_prob_death
##  Min.   :0.00008  
##  1st Qu.:0.00073  
##  Median :0.00298  
##  Mean   :0.01348  
##  3rd Qu.:0.01444  
##  Max.   :0.15084

Task 4: The Ratio

Compute a new variable ratio. It is the ratio of the male probability of death to the female probability. For the year 2019, plot this ratio with Age on the horizontal axis. Use geom_point().

USA <- USA %>% 
  mutate(ratio = male_prob_death / female_prob_death)
USA %>% 
  filter(Year == 2019) %>% 
  ggplot(aes(x = Age, y = ratio)) +
  geom_point() +
  ggtitle("Male-to-Female Probability of Death Ratio (2019)") +
  xlab("Age") +
  ylab("Male/Female Death Probability Ratio")

Task 5: Comments

Describe what you saw in Task 4. How would you explain this?

## The ratio is typically higher at younger ages (infants and children) due to the greater male vulnerability in early life stages.
# Ratios may stabilize or slightly increase in older ages, reflecting differing mortality patterns for men and women.
# Spikes or dips might indicate significant age-specific risks, such as cardiovascular or lifestyle-related factors.


## explanation :
# Biological factors like hormonal differences contribute to males' higher infant and childhood mortality.
# Social and lifestyle behaviors often lead to higher male mortality in adulthood.
# Females tend to have longevity advantages due to genetic and hormonal protections against certain diseases.