1. Simple Model using N

First the simple models trying out both EU Price and US nat gas price - the third model includes a dummy for the period of spiking

Simple model log_N ~ log_NatGasEU

## 
## Call:
## lm(formula = log_N ~ log_NatGasEU, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.60523 -0.14196 -0.02772  0.15044  0.55465 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.61315    0.06868   38.05   <2e-16 ***
## log_NatGasEU  0.46735    0.01386   33.71   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2151 on 290 degrees of freedom
## Multiple R-squared:  0.7967, Adjusted R-squared:  0.796 
## F-statistic:  1136 on 1 and 290 DF,  p-value: < 2.2e-16
Term Estimate Std. Error t Value P-Value
(Intercept) 2.613149 0.0686756 38.05060 0
log_NatGasEU 0.467354 0.0138642 33.70935 0

Simple model log_N ~ log_NatGasUS

## 
## Call:
## lm(formula = log_N ~ log_NatGasUSA, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.43645 -0.18220 -0.02592  0.15731  0.81541 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.65849    0.15892   4.143 4.49e-05 ***
## log_NatGasUSA  0.92091    0.03444  26.739  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2563 on 290 degrees of freedom
## Multiple R-squared:  0.7114, Adjusted R-squared:  0.7104 
## F-statistic:   715 on 1 and 290 DF,  p-value: < 2.2e-16

Simple model log_N ~ log_NatGasUS + dummy(Feb-Sept22)

## 
## Call:
## lm(formula = log_N ~ log_NatGasUSA + Feb_Sept2022, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.43189 -0.18039 -0.02722  0.16226  0.81670 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.80357    0.21304   3.772 0.000197 ***
## log_NatGasUSA  0.88764    0.04739  18.732  < 2e-16 ***
## Feb_Sept2022   0.06496    0.06354   1.022 0.307432    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2563 on 289 degrees of freedom
## Multiple R-squared:  0.7125, Adjusted R-squared:  0.7105 
## F-statistic: 358.1 on 2 and 289 DF,  p-value: < 2.2e-16

Simple model log_N ~ log_NatGasEU + a dummy(Feb-Sept22), the period of greatest increase

## 
## Call:
## lm(formula = log_N ~ log_NatGasEU + Feb_Sept2022, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.57330 -0.14544 -0.01741  0.14001  0.60725 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.79300    0.07740  36.086  < 2e-16 ***
## log_NatGasEU  0.42533    0.01631  26.083  < 2e-16 ***
## Feb_Sept2022  0.20679    0.04559   4.536 8.42e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2082 on 289 degrees of freedom
## Multiple R-squared:  0.8102, Adjusted R-squared:  0.8089 
## F-statistic: 616.8 on 2 and 289 DF,  p-value: < 2.2e-16

2. Simple Model using NPK

Simple model log_NPK ~ log_NatGasUS + a dummy Feb Jul 2022

## 
## Call:
## lm(formula = log_NPK ~ log_NatGasUSA + Feb_Sept2022, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.43988 -0.20831 -0.01761  0.17176  0.57903 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    1.47389    0.19238   7.661 2.79e-13 ***
## log_NatGasUSA  0.74498    0.04279  17.411  < 2e-16 ***
## Feb_Sept2022   0.10637    0.05737   1.854   0.0647 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2314 on 289 degrees of freedom
## Multiple R-squared:  0.6969, Adjusted R-squared:  0.6948 
## F-statistic: 332.2 on 2 and 289 DF,  p-value: < 2.2e-16

Simple model log_NPK ~ log_NatGasEU + a dummy dummy(Feb-Sept22), the period of greatest increase

## 
## Call:
## lm(formula = log_NPK ~ log_NatGasEU + Feb_Sept2022, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.38350 -0.10519 -0.01552  0.10001  0.31751 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.92337    0.04934  59.247  < 2e-16 ***
## log_NatGasEU  0.40404    0.01040  38.866  < 2e-16 ***
## Feb_Sept2022  0.15065    0.02907   5.183 4.11e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1328 on 289 degrees of freedom
## Multiple R-squared:  0.9003, Adjusted R-squared:  0.8996 
## F-statistic:  1304 on 2 and 289 DF,  p-value: < 2.2e-16

3. ARDL models

Now we move on to trying out the ARDL models with various lags of the nat gas EU variable

ARDL model log_N ~ log_N_Lag1week + log_NatGasEU_Lag_1week

## 
## Call:
## lm(formula = log_N ~ log_N_Lag1week + log_NatGasEU_Lag_1weeks, 
##     data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.83167 -0.01597 -0.00155  0.01627  0.73642 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.17158    0.07988   2.148   0.0326 *  
## log_N_Lag1week           0.94944    0.02791  34.015   <2e-16 ***
## log_NatGasEU_Lag_1weeks  0.01573    0.01462   1.076   0.2829    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1022 on 288 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.9544, Adjusted R-squared:  0.9541 
## F-statistic:  3015 on 2 and 288 DF,  p-value: < 2.2e-16

ARDL model log_N ~ log_N_Lag1week + log_NatGasEU_Lag_4weeks

## 
## Call:
## lm(formula = log_N ~ log_N_Lag1week + log_NatGasEU_Lag_4weeks, 
##     data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.82932 -0.01685 -0.00250  0.01676  0.72391 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.092726   0.071985   1.288    0.199    
## log_N_Lag1week           0.989965   0.023214  42.645   <2e-16 ***
## log_NatGasEU_Lag_4weeks -0.008739   0.012140  -0.720    0.472    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1028 on 285 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.9542, Adjusted R-squared:  0.9538 
## F-statistic:  2965 on 2 and 285 DF,  p-value: < 2.2e-16

ARDL model log_N ~ log_N_Lag1week + log_NatGasEU_Lag_8weeks

## 
## Call:
## lm(formula = log_N ~ log_N_Lag1week + log_NatGasEU_Lag_8weeks, 
##     data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.81646 -0.01941 -0.00254  0.01864  0.72019 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.085037   0.065356   1.301   0.1943    
## log_N_Lag1week           1.001154   0.018491  54.142   <2e-16 ***
## log_NatGasEU_Lag_8weeks -0.018389   0.009646  -1.906   0.0576 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1028 on 281 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.9544, Adjusted R-squared:  0.9541 
## F-statistic:  2943 on 2 and 281 DF,  p-value: < 2.2e-16

ARDL model log_N ~ log_N_Lag1week + log_NatGasEU_Lag_24weeks

model <- lm(log_N ~ log_N_Lag1week + log_NatGasEU_Lag_24weeks, data = data)
summary(model)
## 
## Call:
## lm(formula = log_N ~ log_N_Lag1week + log_NatGasEU_Lag_24weeks, 
##     data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.81971 -0.02089 -0.00261  0.01831  0.70946 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.185305   0.070517   2.628  0.00909 ** 
## log_N_Lag1week            0.977663   0.013547  72.167  < 2e-16 ***
## log_NatGasEU_Lag_24weeks -0.015169   0.006876  -2.206  0.02824 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1054 on 265 degrees of freedom
##   (24 observations deleted due to missingness)
## Multiple R-squared:  0.9522, Adjusted R-squared:  0.9518 
## F-statistic:  2637 on 2 and 265 DF,  p-value: < 2.2e-16

ARDL model log_N ~ log_N_Lag1week + log_NatGasEU_Lag_48weeks

## 
## Call:
## lm(formula = log_N ~ log_N_Lag1week + log_NatGasEU_Lag_48weeks, 
##     data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.81071 -0.02550 -0.00257  0.02516  0.71463 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.371992   0.120007   3.100  0.00217 ** 
## log_N_Lag1week            0.946535   0.018052  52.434  < 2e-16 ***
## log_NatGasEU_Lag_48weeks -0.021887   0.008807  -2.485  0.01363 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1099 on 241 degrees of freedom
##   (48 observations deleted due to missingness)
## Multiple R-squared:  0.9487, Adjusted R-squared:  0.9482 
## F-statistic:  2227 on 2 and 241 DF,  p-value: < 2.2e-16

4. ARDL + dummy for spike

We see that the coefficient for natural gas doesn’t make sense. We would expect that to be a positive coefficient. Anyway, we try out the dummy variable for Feb to September 2022 - the period where the price spikes were the highest. Here’s that with the 4 week lag.

## 
## Call:
## lm(formula = log_N ~ log_N_Lag1week + log_NatGasEU_Lag_4weeks + 
##     Feb_Sept2022, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.81132 -0.01938 -0.00398  0.02104  0.72866 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.169118   0.082780   2.043   0.0420 *  
## log_N_Lag1week           0.974433   0.024602  39.608   <2e-16 ***
## log_NatGasEU_Lag_4weeks -0.009886   0.012105  -0.817   0.4148    
## Feb_Sept2022             0.042524   0.023046   1.845   0.0661 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1023 on 284 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.9547, Adjusted R-squared:  0.9542 
## F-statistic:  1995 on 3 and 284 DF,  p-value: < 2.2e-16