# install.packages("ggplot2")
# install.packages("readxl")
library(readxl) # allows us to import Excel files
library(ggplot2) # used for creating time series plots
df <- read_excel("Mortgage.xlsx")
summary(df)
## Year Period Interest_Rate
## Min. :2000-01-01 00:00:00 Min. : 1.00 Min. :2.958
## 1st Qu.:2005-10-01 18:00:00 1st Qu.: 6.75 1st Qu.:3.966
## Median :2011-07-02 12:00:00 Median :12.50 Median :4.863
## Mean :2011-07-02 18:00:00 Mean :12.50 Mean :5.084
## 3rd Qu.:2017-04-02 06:00:00 3rd Qu.:18.25 3rd Qu.:6.105
## Max. :2023-01-01 00:00:00 Max. :24.00 Max. :8.053
Interpretation: On average, the interest rate across the dataset is 5.08%.
###Step 3: Construct a time series plot
ggplot(df, aes(x = Period, y = Interest_Rate)) +
geom_line(color = "blue") +
geom_point() +
xlab("Period (Years)") +
ylab("Interest Rate (%)") +
ggtitle("Time Series Plot of 30-Year Fixed-Rate Mortgage Interest Rates")
Interpretation: The time series plot shows a decreasing trend in interest rates over the 24-year period.
model <- lm(Interest_Rate ~ Period, data = df)
summary(model)
##
## Call:
## lm(formula = Interest_Rate ~ Period, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3622 -0.7212 -0.2823 0.5015 3.1847
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.69541 0.43776 15.295 3.32e-13 ***
## Period -0.12890 0.03064 -4.207 0.000364 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.039 on 22 degrees of freedom
## Multiple R-squared: 0.4459, Adjusted R-squared: 0.4207
## F-statistic: 17.7 on 1 and 22 DF, p-value: 0.0003637
Interpretation:
Result - estimated linear trend equation: 6.7 - 0.13 * Period OR
T_hat = 6.7 - 0.13 * t
The R-squared value is 0.45 (Moderately fits the data).
The overall model is significant as p-value is 0.0004 (p-value < 0.05).
df$Predicted_Interest_Rate <- predict(model)
df$Residuals <- df$Interest_Rate - df$Predicted_Interest_Rate
mse <- mean(df$Residuals^2)
cat("Mean Squared Error (MSE):", mse, "\n")
## Mean Squared Error (MSE): 0.989475
df$percentage_error <- abs(df$Residuals / df$Interest_Rate) * 100
mape <- mean(df$percentage_error, na.rm = TRUE)
cat("Mean Absolute Percentage Error (MAPE):", mape, "%\n")
## Mean Absolute Percentage Error (MAPE): 15.79088 %
Interpretation:
The MSE of 0.9895 indicates low variance in the residuals,
while the MAPE of 15.79% reflects a moderate average forecasting error in percentage terms.
forecast_period_25 <- predict(model, newdata = data.frame(Period = 25))
forecast_period_25
## 1
## 3.472942
Interpretation: Using the linear trend equation, the forecasted interest rate for 2024 (Period 25)
is approximately 3.47%.