Tecnológico de Monterrey
Doctor Teófilo Ozuna
Alumna:
Avril Lobato Delgado A00833113
##Librerias
library(ggplot2)
library(dplyr)
library(tidyr)
library(lubridate)
library(purrr)
library(plotly)
library(forecast)
library(readxl)
library(DataExplorer)
library(dplyr)
library(ggplot2)
library(tm)
library(cluster)
library(factoextra)
library(gridExtra)
library(purrr)
library(pROC)
library(rpart)
library(rpart.plot)
library(e1071)
library(ggpubr)
library(dlookr)
library(zoo)
library(caret)
library(stats)
library(tseries)
library(readr)
library(vars)
library(syuzhet)
library(kableExtra)
library(plotly)
library(scales)
library(knitr)
library(rmgarch)
library(devtools)
library(openxlsx)
library(relaimpo)
library(stargazer)
library(RColorBrewer)
library(PerformanceAnalytics)
library(ConnectednessApproach)
library(readr)
library(tseries)
library(forecast)
library(urca)
library(fGarch)
library(MTS)
library(MASS)
library(nortest)
library(outliers)
library(moments)
library(FinTS)
library(WeightedPortTest)
# Lee el archivo CSV y selecciona las columnas relevantes
index_alt <- read_csv("C:\\Users\\AVRIL\\Documents\\Latinas\\returns.csv")
data <- index_alt[, c("Fecha", "Multi_Returns", "Techno_Returns")]
# Asegúrate de que 'Fecha' y 'Multi_Returns' estén definidos correctamente.
data$Fecha <- as.Date(data$Fecha, format = "%d/%m/%Y")
data$Multi_Returns <- as.numeric(data$Multi_Returns)
data$Techno_Returns <- as.numeric(data$Techno_Returns)
## Warning: NAs introducidos por coerción
data <- na.omit(data)
# Crear matriz y objeto zoo
data_matrix <- as.matrix(data[, -1]) # Excluir la columna 'Fecha'
data_zoo <- zoo(data_matrix, order.by = data$Fecha)
## 'zoo' series from 2010-01-04 to 2024-11-15
## Data: num [1:5282, 1:2] 0 0.16011 0.20009 0.00847 0.11226 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:2] "Multi_Returns" "Techno_Returns"
## Index: Date[1:5282], format: "2010-01-04" "2010-01-05" "2010-01-06" "2010-01-07" "2010-01-08" ...
## Index Multi_Returns Techno_Returns
## Min. :2010-01-04 Min. :-7.43852 Min. :-25.06103
## 1st Qu.:2013-09-23 1st Qu.:-0.04917 1st Qu.: -0.02594
## Median :2017-06-13 Median : 0.00000 Median : 0.00000
## Mean :2017-06-13 Mean : 0.07791 Mean : 0.03507
## 3rd Qu.:2021-03-05 3rd Qu.: 0.28119 3rd Qu.: 0.36610
## Max. :2024-11-15 Max. : 1.00000 Max. : 1.00000
## [1] 5282 2
dca = ConnectednessApproach(data_zoo,
nlag=4,
nfore=10,
model="VAR",
connectedness="Time",
Connectedness_config=list(TimeConnectedness=list(generalized=TRUE)))
## Estimating model
## Computing connectedness measures
## The (generalized) VAR connectedness approach is implemented according to:
## Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66.
Multi_Returns | Techno_Returns | FROM | |
---|---|---|---|
Multi_Returns | 91.24 | 8.76 | 8.76 |
Techno_Returns | 9.53 | 90.47 | 9.53 |
TO | 9.53 | 8.76 | 18.29 |
Inc.Own | 100.77 | 99.23 | cTCI/TCI |
NET | 0.77 | -0.77 | 18.29/9.14 |
NPT | 1.00 | 0.00 |
dca = ConnectednessApproach(data_zoo,
nlag=4,
nfore=10,
window.size=200,
model="VAR",
connectedness="Time",
Connectedness_config=list(TimeConnectedness=list(generalized=TRUE)))
## Estimating model
## Computing connectedness measures
## The (generalized) VAR connectedness approach is implemented according to:
## Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66.