Set up

Import data

Import the cleaned data from Module 7.

library(h2o)
## Warning: package 'h2o' was built under R version 4.3.3
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## The following objects are masked from 'package:base':
## 
##     %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ lubridate::day()   masks h2o::day()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ lubridate::hour()  masks h2o::hour()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ lubridate::month() masks h2o::month()
## ✖ lubridate::week()  masks h2o::week()
## ✖ lubridate::year()  masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidymodels)
## Warning: package 'tidymodels' was built under R version 4.3.3
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.5     ✔ rsample      1.2.1
## ✔ dials        1.3.0     ✔ tune         1.2.1
## ✔ infer        1.0.7     ✔ workflows    1.1.4
## ✔ modeldata    1.4.0     ✔ workflowsets 1.1.0
## ✔ parsnip      1.2.1     ✔ yardstick    1.3.1
## ✔ recipes      1.1.0
## Warning: package 'dials' was built under R version 4.3.3
## Warning: package 'infer' was built under R version 4.3.3
## Warning: package 'modeldata' was built under R version 4.3.3
## Warning: package 'parsnip' was built under R version 4.3.3
## Warning: package 'recipes' was built under R version 4.3.3
## Warning: package 'rsample' was built under R version 4.3.3
## Warning: package 'tune' was built under R version 4.3.3
## Warning: package 'workflows' was built under R version 4.3.3
## Warning: package 'workflowsets' was built under R version 4.3.3
## Warning: package 'yardstick' was built under R version 4.3.3
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Learn how to get started at https://www.tidymodels.org/start/
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## 
## Attaching package: 'TTR'
## 
## The following object is masked from 'package:dials':
## 
##     momentum
## 
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
data <- read_csv("../00_data/data_wrangled/data_clean_apply.csv") %>%
    
    # h2o requires all variables to be either numeric or factors
    mutate(across(where(is.character), factor))
## New names:
## Rows: 501 Columns: 10
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (1): still_there dbl (8): ...1, fyear, co_per_rol, departure_code,
## ceo_dismissal, tenure_no_... date (1): leftofc
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`

Split data

set.seed(1234)

data_split <- initial_split(data, strata = "ceo_dismissal")
train_tbl <- training(data_split)
test_tbl <- testing(data_split)

Recipes

recipe_obj <- recipe(ceo_dismissal ~ ., data = train_tbl) %>%
    
    # Remove zero variance variables
    step_zv(all_predictors()) 

Model

# Initialize h2o
h2o.init()
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         4 minutes 47 seconds 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    11 months and 1 day 
##     H2O cluster name:           H2O_started_from_R_nilss_whl202 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.58 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.3.2 (2023-10-31 ucrt)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (11 months and 1 day) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
split.h2o <- h2o.splitFrame(as.h2o(train_tbl), ratio = c(0.85), seed = 2345)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
train_h2o <- split.h2o[[1]]
valid_h2o <- split.h2o[[2]]
test_h2o <- as.h2o(test_tbl)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
y <- "ceo_dismissal"
x <- setdiff(names(train_tbl), y)

models_h2o <-h2o.automl(
    x = x, 
    y = y, 
    training_frame    = train_h2o, 
    validation_frame  = valid_h2o, 
    leaderboard_frame = test_h2o, 
    # max_runtime_secs  = 30, 
    max_models        = 10,
    exclude_algos     = "DeepLearning",
    nfolds            = 5, 
    seed              = 3456 
)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |====================                                                  |  29%
## 21:45:07.905: User specified a validation frame with cross-validation still enabled. Please note that the models will still be validated using cross-validation only, the validation frame will be used to provide purely informative validation metrics on the trained models.
## 21:45:07.908: AutoML: XGBoost is not available; skipping it.
## 21:45:07.910: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:45:08.82: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:45:08.212: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:45:08.413: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:45:08.583: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:45:08.747: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:45:08.944: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:45:09.73: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:45:09.704: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
## 21:45:10.43: _response param, We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
  |                                                                            
  |======================================================================| 100%

Examine the output of h2o.automl

models_h2o %>% typeof() 
## [1] "S4"
models_h2o %>% slotNames()
## [1] "project_name"   "leader"         "leaderboard"    "event_log"     
## [5] "modeling_steps" "training_info"
models_h2o@leaderboard
##                                                  model_id       rmse
## 1 StackedEnsemble_BestOfFamily_1_AutoML_2_20241121_214507 0.01441041
## 2    StackedEnsemble_AllModels_1_AutoML_2_20241121_214507 0.01514312
## 3                          GLM_1_AutoML_2_20241121_214507 0.03040661
## 4                          GBM_5_AutoML_2_20241121_214507 0.04065315
## 5                          XRT_1_AutoML_2_20241121_214507 0.05639046
## 6             GBM_grid_1_AutoML_2_20241121_214507_model_2 0.07468147
##            mse         mae      rmsle mean_residual_deviance
## 1 0.0002076599 0.004475705 0.01359838           0.0002076599
## 2 0.0002293142 0.004444123 0.01437640           0.0002293142
## 3 0.0009245619 0.008272408 0.03240156           0.0009245619
## 4 0.0016526786 0.005553645 0.02251009           0.0016526786
## 5 0.0031798839 0.008092820 0.03199365           0.0031798839
## 6 0.0055773224 0.012960909 0.04623959           0.0055773224
## 
## [12 rows x 6 columns]
models_h2o@leader
## Model Details:
## ==============
## 
## H2ORegressionModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_1_AutoML_2_20241121_214507 
## Model Summary for Stacked Ensemble: 
##                                     key            value
## 1                     Stacking strategy cross_validation
## 2  Number of base models (used / total)              3/4
## 3      # GBM base models (used / total)              1/1
## 4      # GLM base models (used / total)              1/1
## 5      # DRF base models (used / total)              1/2
## 6                 Metalearner algorithm              GLM
## 7    Metalearner fold assignment scheme           Random
## 8                    Metalearner nfolds                5
## 9               Metalearner fold_column               NA
## 10   Custom metalearner hyperparameters             None
## 
## 
## H2ORegressionMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.0004211641
## RMSE:  0.02052228
## MAE:  0.004113045
## RMSLE:  0.01246042
## Mean Residual Deviance :  0.0004211641
## 
## 
## H2ORegressionMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  1.486865e-05
## RMSE:  0.003855989
## MAE:  0.002471622
## RMSLE:  0.003880091
## Mean Residual Deviance :  1.486865e-05
## 
## 
## H2ORegressionMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.000937946
## RMSE:  0.0306259
## MAE:  0.006336358
## RMSLE:  0.02448172
## Mean Residual Deviance :  0.000937946
## 
## 
## Cross-Validation Metrics Summary: 
##                            mean       sd cv_1_valid cv_2_valid cv_3_valid
## mae                    0.005820 0.003339   0.006603   0.003980   0.011231
## mean_residual_deviance 0.000705 0.001228   0.000607   0.000022   0.002854
## mse                    0.000705 0.001228   0.000607   0.000022   0.002854
## null_deviance          0.399707 0.541925   0.993402   0.005376   0.993308
## r2                         -Inf       NA   0.963549       -Inf   0.791629
## residual_deviance      0.049046 0.088717   0.035833   0.001777   0.205477
## rmse                   0.018296 0.021501   0.024644   0.004655   0.053421
## rmsle                  0.015447 0.016590   0.022048   0.004640   0.041792
##                        cv_4_valid cv_5_valid
## mae                      0.002682   0.004603
## mean_residual_deviance   0.000012   0.000028
## mse                      0.000012   0.000028
## null_deviance            0.004083   0.002364
## r2                           -Inf       -Inf
## residual_deviance        0.000844   0.001301
## rmse                     0.003497   0.005261
## rmsle                    0.003506   0.005250
best_model <- models_h2o@leader

best_model
## Model Details:
## ==============
## 
## H2ORegressionModel: stackedensemble
## Model ID:  StackedEnsemble_BestOfFamily_1_AutoML_2_20241121_214507 
## Model Summary for Stacked Ensemble: 
##                                     key            value
## 1                     Stacking strategy cross_validation
## 2  Number of base models (used / total)              3/4
## 3      # GBM base models (used / total)              1/1
## 4      # GLM base models (used / total)              1/1
## 5      # DRF base models (used / total)              1/2
## 6                 Metalearner algorithm              GLM
## 7    Metalearner fold assignment scheme           Random
## 8                    Metalearner nfolds                5
## 9               Metalearner fold_column               NA
## 10   Custom metalearner hyperparameters             None
## 
## 
## H2ORegressionMetrics: stackedensemble
## ** Reported on training data. **
## 
## MSE:  0.0004211641
## RMSE:  0.02052228
## MAE:  0.004113045
## RMSLE:  0.01246042
## Mean Residual Deviance :  0.0004211641
## 
## 
## H2ORegressionMetrics: stackedensemble
## ** Reported on validation data. **
## 
## MSE:  1.486865e-05
## RMSE:  0.003855989
## MAE:  0.002471622
## RMSLE:  0.003880091
## Mean Residual Deviance :  1.486865e-05
## 
## 
## H2ORegressionMetrics: stackedensemble
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.000937946
## RMSE:  0.0306259
## MAE:  0.006336358
## RMSLE:  0.02448172
## Mean Residual Deviance :  0.000937946
## 
## 
## Cross-Validation Metrics Summary: 
##                            mean       sd cv_1_valid cv_2_valid cv_3_valid
## mae                    0.005820 0.003339   0.006603   0.003980   0.011231
## mean_residual_deviance 0.000705 0.001228   0.000607   0.000022   0.002854
## mse                    0.000705 0.001228   0.000607   0.000022   0.002854
## null_deviance          0.399707 0.541925   0.993402   0.005376   0.993308
## r2                         -Inf       NA   0.963549       -Inf   0.791629
## residual_deviance      0.049046 0.088717   0.035833   0.001777   0.205477
## rmse                   0.018296 0.021501   0.024644   0.004655   0.053421
## rmsle                  0.015447 0.016590   0.022048   0.004640   0.041792
##                        cv_4_valid cv_5_valid
## mae                      0.002682   0.004603
## mean_residual_deviance   0.000012   0.000028
## mse                      0.000012   0.000028
## null_deviance            0.004083   0.002364
## r2                           -Inf       -Inf
## residual_deviance        0.000844   0.001301
## rmse                     0.003497   0.005261
## rmsle                    0.003506   0.005250

Save and Load

#?h2o.getModel
#?h2o.saveModel
#?h2o.loadModel

#h2o.getModel(GBM_3_AutoML_1_20241121_121503) %>%
   # h2o.saveModel("h2o_models/")

#best_model <- h2o.loadModel(GBM_3_AutoML_1_20241121_121503)

Make predictions

predictions <- h2o.predict(best_model, newdata = test_h2o)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
## Warning in doTryCatch(return(expr), name, parentenv, handler): Test/Validation
## dataset column 'still_there' has levels not trained on: ["12/8//2020"]
predictions_tbl <- predictions %>%
    as_tibble()

# predictions_tbl %>%
    # bind_cols(test_tbl)

Evaluate model

?h2o.performance
## starting httpd help server ... done
performance_h2o <- h2o.performance(best_model, newdata = as.h2o(test_tbl))
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
typeof(performance_h2o)
## [1] "S4"
slotNames(performance_h2o)
## [1] "algorithm" "on_train"  "on_valid"  "on_xval"   "metrics"
performance_h2o@metrics
## $model
## $model$`__meta`
## $model$`__meta`$schema_version
## [1] 3
## 
## $model$`__meta`$schema_name
## [1] "ModelKeyV3"
## 
## $model$`__meta`$schema_type
## [1] "Key<Model>"
## 
## 
## $model$name
## [1] "StackedEnsemble_BestOfFamily_1_AutoML_2_20241121_214507"
## 
## $model$type
## [1] "Key<Model>"
## 
## $model$URL
## [1] "/3/Models/StackedEnsemble_BestOfFamily_1_AutoML_2_20241121_214507"
## 
## 
## $model_checksum
## [1] "-5763700579230764800"
## 
## $frame
## $frame$name
## [1] "test_tbl_sid_99ab_125"
## 
## 
## $frame_checksum
## [1] "-1981703159836798916"
## 
## $description
## NULL
## 
## $scoring_time
## [1] 1.732244e+12
## 
## $predictions
## NULL
## 
## $MSE
## [1] 0.0002076599
## 
## $RMSE
## [1] 0.01441041
## 
## $nobs
## [1] 126
## 
## $custom_metric_name
## NULL
## 
## $custom_metric_value
## [1] 0
## 
## $r2
## [1] 0.9867064
## 
## $mean_residual_deviance
## [1] 0.0002076599
## 
## $mae
## [1] 0.004475705
## 
## $rmsle
## [1] 0.01359838
## 
## $residual_deviance
## [1] 0.02616515
## 
## $null_deviance
## [1] 1.98034
## 
## $AIC
## [1] -700.8582
## 
## $loglikelihood
## [1] 0
## 
## $null_degrees_of_freedom
## [1] 125
## 
## $residual_degrees_of_freedom
## [1] 122
h2o.auc(performance_h2o)
## NULL
h2o.confusionMatrix(performance_h2o)
## Warning in .local(object, ...): No Confusion Matrices for H2ORegressionMetrics
## NULL