In a factorial design, whether factor effects are fixed or random will affect the f-tests that determine the significance of the effect if there is more than one factor.
Does not change the way the sums of squares (SSA,SSB,etc.) or mean squares (MSA,MSB,etc.) are computed.
A = Thickness of Plastic (1mm…2mm) <- Random
B = Type of Plastic (PVC, ABX) <- Fixed
Model Equation: \(y\_{ijk} = \mu + \alpha_{i} + \beta_{j} + \alpha\beta_{ij} + \epsilon_{ijk}\)
where \(\epsilon_{ijk} \sim N(0,\sigma^2)\)
\(E[y_{ijk}] = \mu + \alpha_{i} + \beta_{j} + \alpha\beta_{ij}\)
\(Var[y_{ijk}] = \sigma^2\)
\(H_o: \alpha_{i} = 0 , H_a: \alpha_{i} \neq 0\)
\(H_o: \beta_{j} = 0 , H_a: \beta_{j} \neq 0\)
\(H_o: \alpha\beta_{ij} = 0 , H_a: \alpha\beta_{ij} \neq 0\)
## Source d.f. SS MS f
## 1 A I-1 SSA MSA MSA/MSE
## 2 B J-1 SSB MSB MSB/MSE
## 3 AB (I-1)(J-1) SSAB MSAB MSAB/MSE
## 4 error SSE MSE
## 5 Total IJK-1
\(E[MSA] = \sigma^2 + \frac{JK\sum(\alpha_{i}^2)}{(I-1)}\)
\(E[MSB] = \sigma^2 + \frac{IK\sum(\beta_{j}^2)}{(J-1)}\)
\(E[MSAB] = \sigma^2 + \frac{K\sum(\alpha\beta_{ij}^2)}{(I-1)(J-1)}\)
\(E[MSE] = \sigma^2\)
\(f = \frac{E[MSA]}{E[MSE]} = \frac{\sigma^2 + \frac{JK\sum(\alpha_{i}^2)}{(I-1)}}{\sigma^2} = 1\)
\(f = \frac{E[MSAB]}{E[MSE]} = \frac{\sigma^2 + \frac{K\sum(\alpha\beta_{ij}^2)}{(I-1)(J-1)}}{\sigma^2} = 1\)
Model Equation: \(y\_{ijk} = \mu + \alpha_{i} + \beta_{j} + \alpha\beta_{ij} + \epsilon_{ijk}\)
\(E[y_{ijk}] = \mu\)
\(Var[y_{ijk}] = \sigma_{\alpha}^2 + \sigma_{\beta}^2 + \sigma_{\alpha\beta}^2 + \sigma^2\)
\(H_o: \sigma_{\alpha}^2 = 0 , H_a: \sigma_{\alpha}^2 \neq 0\)
\(H_o: \sigma_{\beta}^2 = 0 , H_a: \sigma_{\beta}^2 \neq 0\)
\(H_o: \sigma_{\alpha\beta}^2 = 0 , H_a: \sigma_{\alpha\beta}^2 \neq 0\)
\(E[MSE] = \sigma^2\)
\(E[MSA] = JK\sigma_{\alpha}^2 + K\sigma_{\alpha\beta}^2 + \sigma^2\)
\(E[MSB] = IK\sigma_{\beta}^2 + K\sigma_{\alpha\beta}^2 + \sigma^2\)
\(E[MSAB] = K\sigma_{\alpha\beta}^2 + \sigma^2\)
\(f = \frac{E[MSA]}{E[MSAB]} = \frac{JK\sigma_{\alpha}^2 + K\sigma_{\alpha\beta}^2 + \sigma^2}{K\sigma_{\alpha\beta}^2 + \sigma^2} = 1\)
\(f = \frac{E[MSAB]}{E[MSE]} = \frac{K\sigma_{\alpha\beta}^2 + \sigma^2}{\sigma^2} = 1\)
## Source d.f. SS MS f
## 1 A I-1 SSA MSA MSA/MSAB
## 2 B J-1 SSB MSB MSB/MSAB
## 3 AB (I-1)(J-1) SSAB MSAB MSAB/MSE
## 4 error SSE MSE
## 5 Total IJK-1
Model Equation: \(y\_{ijk} = \mu + \alpha_{i} + \beta_{j} + \alpha\beta_{ij} + \epsilon_{ijk}\)
\(\alpha = Fixed, \beta = Random, \alpha\beta = Random\)
\(H_o: \alpha_{i} = 0 , H_a: \alpha_{i} \neq 0\)
\(H_o: \sigma_{\beta}^2 = 0 , H_a: \sigma_{\beta}^2 \neq 0\)
\(H_o: \sigma_{\alpha\beta}^2 = 0 , H_a: \sigma_{\alpha\beta}^2 \neq 0\)
\(E[MSA] = \sigma_{\alpha}^2 + K\sigma_{\alpha\beta}^2 + \frac{JK\sum(\alpha_{i}^2)}{(I-1)}\)
\(E[MSB] = \sigma^2 + IK\sigma_{\beta}^2\)
\(Note: K\sigma_{\alpha\beta}^2 \ is \ restricted\)
\(E[MSAB] = \sigma^2 + K\sigma_{\alpha\beta}^2\)
\(E[MSE] = \sigma^2\)
## Source d.f. SS MS f
## 1 A I-1 SSA MSA MSA/MSAB
## 2 B J-1 SSB MSB MSB/MSE
## 3 AB (I-1)(J-1) SSAB MSAB MSAB/MSE
## 4 error SSE MSE
## 5 Total IJK-1