Load the Libraries

library(readxl)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(zoo)
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(ggplot2)

Question 1:

# Time Series Data
week <- 1:6 # Independent variable
values1 <- c(17,13,15,11,17,14) # Dependent Variable

# Most Recent Value
forecast <- values1[-length(values1)] # Excludes the last value
actual <- values1[-1] # Exclude the first sale
mse <- mean((actual - forecast)^2)
mse # Mean Square Error is 16.2
## [1] 16.2
mae <- mean(abs(actual - forecast))
mae # Mean absolute error is 3.8
## [1] 3.8
mape <- mean(abs((actual - forecast)/actual)) * 100
mape # Mean absolute percentage error is 27.44
## [1] 27.43778
# Forecast for week 7
forecast_week7 <- tail(values1, 1)
forecast_week7
## [1] 14
# The value projected for week 7 is 14

Question 2:

# Moving Average

# Time Series Data
df <- data.frame(month=c(1,2,3,4,5,6,7,8,9,10,11,12),
                 values=c(240, 352, 230, 260, 280, 322, 220, 310, 240, 310, 240, 230))

summary(df) # Descriptive Statistics - Averages value over the 12 month period is 269.5
##      month           values     
##  Min.   : 1.00   Min.   :220.0  
##  1st Qu.: 3.75   1st Qu.:237.5  
##  Median : 6.50   Median :250.0  
##  Mean   : 6.50   Mean   :269.5  
##  3rd Qu.: 9.25   3rd Qu.:310.0  
##  Max.   :12.00   Max.   :352.0
# Time Series Plot
plot(df$month, df$values, type = "o", col = "blue", xlab = "Month", ylab = "Values",
     main = "Alabama Building Contract Plot")

# Interpretation: The time series plot exhibits a horizontal pattern that is steady on the mean.

# Manually Calculate the Three-Month Moving Average
df$avg_values <- c(NA, NA, NA,
                    (df$values[1] + df$values[2] + df$values[3]) / 3,
                    (df$values[2] + df$values[3] + df$values[4]) / 3,
                    (df$values[3] + df$values[4] + df$values[5]) / 3,
                    (df$values[4] + df$values[5] + df$values[6]) / 3,
                    (df$values[5] + df$values[6] + df$values[7]) / 3,
                    (df$values[6] + df$values[7] + df$values[8]) / 3,
                    (df$values[7] + df$values[8] + df$values[9]) / 3,
                    (df$values[8] + df$values[9] + df$values[10]) / 3,
                    (df$values[9] + df$values[10] + df$values[11]) / 3
                    )

# Calculate the squared errors (only for months where moving average is available)

df <- df %>% mutate(squared_error = ifelse(is.na(avg_values), NA, (values-avg_values)^2))

# Compute MSE (excluding the initial weeks with NA)
mse1 <- mean(df$squared_error, na.rm = TRUE)
mse1 # MSE Output: 2040.44
## [1] 2040.444
# Exponential Smoothing

alpha <- 0.2
exp_smooth <- rep(NA, length(df$values))
exp_smooth[1] <- df$values[1] # Starting Point
for(i in 2:length(df$values)) {
  exp_smooth[i] <- alpha * df$values[i-1] + (1 - alpha) * exp_smooth[i-1]
}

mse_exp_smooth <- mean((df$values[2:12] - exp_smooth[2:12])^2) # MSE Output: = 2593.76

# Comparison
better_method <- ifelse(mse < mse_exp_smooth, "Three-Month Moving Average", "Exponential Smoothing")

# Results
list(
  MSE_Moving_Average = mse,
  MSE_Exponential_Smoothing = mse_exp_smooth,
  Better_Method = better_method
)
## $MSE_Moving_Average
## [1] 16.2
## 
## $MSE_Exponential_Smoothing
## [1] 2593.762
## 
## $Better_Method
## [1] "Three-Month Moving Average"

Question 3:

# Load the Data
data <- read_excel("C:/Users/nikol/Downloads/Mortgage.xlsx")

df1 <- data.frame(period=data$Period,
                 rate=data$Interest_Rate)

summary(df1) # Descriptive Statistics: The average mortgage rate over the 20 years is 5.08%.
##      period           rate      
##  Min.   : 1.00   Min.   :2.958  
##  1st Qu.: 6.75   1st Qu.:3.966  
##  Median :12.50   Median :4.863  
##  Mean   :12.50   Mean   :5.084  
##  3rd Qu.:18.25   3rd Qu.:6.105  
##  Max.   :24.00   Max.   :8.053
# Time Series Plot

plot(df1$period, df1$rate, type = "o", col = "blue", xlab = "Year", ylab = "Interest Rate",
     main = "30 Year Mortgage Rates")

ggplot(df1, aes(x=period, y =rate)) +
  geom_line() +
  geom_point() +
  xlab("Period") +
  ylab("Interest Rate") +
  ggtitle("Time Series Plot of 30 Year Mortgage Rates")

# Interpretation: We observe a decreasing trend in the time series plot with some seasonal patterns that could be explained by economic cycles.

# Linear trend equation
model <- lm(rate ~ period, data = df1)
summary(model)
## 
## Call:
## lm(formula = rate ~ period, data = df1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3622 -0.7212 -0.2823  0.5015  3.1847 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.69541    0.43776  15.295 3.32e-13 ***
## period      -0.12890    0.03064  -4.207 0.000364 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.039 on 22 degrees of freedom
## Multiple R-squared:  0.4459, Adjusted R-squared:  0.4207 
## F-statistic:  17.7 on 1 and 22 DF,  p-value: 0.0003637
# Result - estimated linear trend equation: rate = 6.69 + (-0.13)*period

# Forecast the average interest rate for period 25 i.e. 2024
forecast_period_25 <- predict(model, newdata = data.frame(period=25))
forecast_period_25 # Result 3.47
##        1 
## 3.472942
# Interpretation: The forecasted 30 Year Mortgage Rate for period 25 or 2024 is 3.47%