1 PREPARATION

data1=import("2_AIReflectionBW.NoMissingS1.sav")%>%data.table#AIReflectionBW.NoMissingS1
data2=import("AIReflectionBW.NoMissingS2.sav")%>%data.table #%>%
data2$W.dX=as.factor(data2$W.X)
data2 <- data2 %>%
  mutate(
    W.X10 = ifelse(W.X == 1, 1, 0),
    W.X01 = ifelse(W.X == 2, 1, 0)
  )
data2=data2[, W.CheckDummyX := paste(W.Intervention_new,W.X,W.X10,W.X01, sep = "_")]
Freq(data2$W.CheckDummyX)
## Frequency Statistics:
## ───────────────────────────
##                      N    %
## ───────────────────────────
## AI_0_0_0           328 33.3
## No_1_1_0           328 33.3
## Traditional_2_0_1  328 33.3
## ───────────────────────────
## Total N = 984
#data2=import("AIReflectionBW.NoMissingS2.sav")%>%data.table #%>%
#  mutate(
#    W.X1 = ifelse(W.X == 1, 1, 0),
#    W.X2 = ifelse(W.X == 2, 1, 0)
#  )
#head(data2[,.(W.X,W.X1,W.X2)],10)%>%print_table()

data2=added(data2,{
  W.X10BA.AIOnlineCommunicationSkillsV=W.X10*BA.AIOnlineCommunicationSkillsV
  W.X01BA.AIOnlineCommunicationSkillsV=W.X01*BA.AIOnlineCommunicationSkillsV})

variables <- c(
  "BA.AIOnlineCommunicationSkillsV", "BA.StructureV", "BA.WayOfQuestioningV",
  "BA.ClarityOfInformationV", "BA.AIInteractionQualityV", "BA.ProblemSolvingConfidenceV",
  "BA.NeedForPersonalizationDueToAIV", "BA.ReflectionOnAIUseV", "BA.CapabilityV",
  "BA.PositiveReflectionOnAIUseV", "BA.NegativeReflectionOnAIUseV", "BB.AIUsageV",
  "BB.AITechnologyAnxietyV", "BB.TrustInAIV", "BA.EffectivenessV",
  "BA.QualityV", "BA.PersonalControlV", "BA.AIServiceFailureV",
  "BA.AnthropomorphismV"
)



# 使用 lapply 和 := 动态创建交乘项变量
data2=data2[, paste0("W.X10", variables) := lapply(.SD, function(x) W.X10 * x), .SDcols = variables]

data2=data2[, paste0("W.X01", variables) := lapply(.SD, function(x) W.X01 * x), .SDcols = variables]

2 ILLUSTRATION-FULL MODEL: M ON X

2.1 Model

X=AI facilitated reflection (W.X)

M=WA.ProblemSolvingPonderingV

W=BA.AIServiceFailureV

2.2 Study 1

pmacroModel(1,labels=list(X="X0/1")) 

statisticalDiagram(1,labels=list(X="X0/1",XW="X0/1W"))

基于原始值的调节分析

\[Y=i_Y+b_1X+b_2W+b_3XW+e_Y\]

\[Y=i_y+(b_1+b_3W)X+b_2W+e_Y\]

判断标准:同号同向加强(++更正/–更负);异号反向削弱(+-不那么正/-+不那么负)

可以写成:

\[Y=i_y+f(W)X+b_2W+e_Y\]

PROCESS(data1, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X", mods="BA.ReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X*BA.ReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.707 ***                                          2.143 ***                                     
##                              (0.107)                                            (0.333)                                        
## W.X                          -0.154                                              0.357                                         
##                              (0.082)                                            (0.271)                                        
## BA.ReflectionOnAIUseV                                                            0.390 ***                                     
##                                                                                 (0.079)                                        
## W.X:BA.ReflectionOnAIUseV                                                       -0.127 *                                       
##                                                                                 (0.064)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.002                                              0.077                                         
## Conditional R^2               0.532                                              0.536                                         
## AIC                        2256.283                                           2244.539                                         
## BIC                        2283.273                                           2280.525                                         
## Num. obs.                   664                                                664                                             
## Num. groups: B.ID           166                                                166                                             
## Var: B.ID (Intercept)         1.352                                              1.124                                         
## Var: B.ID W.X                 0.006                                              0.001                                         
## Cov: B.ID (Intercept) W.X    -0.093                                             -0.027                                         
## Var: Residual                 1.115                                              1.110                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X * BA.ReflectionOnAIUseV  3.92   1 495  .048 *  
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────
##  2.741 (- SD)             0.008 (0.116)  0.072  .942     [-0.218,  0.235]
##  4.013 (Mean)            -0.154 (0.082) -1.878  .061 .   [-0.314,  0.007]
##  5.286 (+ SD)            -0.316 (0.116) -2.727  .007 **  [-0.542, -0.089]
## ─────────────────────────────────────────────────────────────────────────
interact_plot(S1$model.y, W.X, BA.ReflectionOnAIUseV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))
## Error in eval(expr, envir, enclos): 找不到对象'S1'

2.3 Study 2

表10.1包含了两个模型的同归系数并总了统计量。前四行构建了指示符代码和两个乘积,以及剩余的行估计出:

\[\hat{Y}=i_Y+b_1 D_1+b_2 D_2+b_3\] \[\hat{Y}=i_Y+b_1 D_1+b_2 D_2+b_3 W+b_4 D_1 W+b_5 D_2 W\] 公式可改写为:

\[\hat{Y}=i_Y+(b_1 +b_4 W)D_1+(b_2+b_5 W)D_2 +b_3 W\]

pmacroModel(2,labels=list(X="X",W="X01",Z="X10")) 

statisticalDiagram(2,labels=list(X="W",W="X01",Z="X10"),whatLabel="label")

2.3.1 Treating W.X as moderator

data2$W.X=as.factor(data2$W.X)
S2=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="BA.ReflectionOnAIUseV", mods="W.X", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : BA.ReflectionOnAIUseV
## -  Mediators (M) : -
## - Moderators (W) : W.X
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ BA.ReflectionOnAIUseV*W.X + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                             (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                    1.597 ***                                          1.170 **                                      
##                               (0.335)                                            (0.369)                                        
## BA.ReflectionOnAIUseV          0.494 ***                                          0.590 ***                                     
##                               (0.079)                                            (0.087)                                        
## W.X1                                                                              0.479 *                                       
##                                                                                  (0.219)                                        
## W.X2                                                                              0.640 *                                       
##                                                                                  (0.250)                                        
## BA.ReflectionOnAIUseV:W.X1                                                       -0.093                                         
##                                                                                  (0.052)                                        
## BA.ReflectionOnAIUseV:W.X2                                                       -0.149 *                                       
##                                                                                  (0.059)                                        
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                   0.145                                              0.155                                         
## Conditional R^2                0.738                                              0.742                                         
## AIC                         2903.012                                           2917.085                                         
## BIC                         2946.982                                           2980.596                                         
## Num. obs.                    978                                                978                                             
## Num. groups: B.ID            163                                                163                                             
## Var: B.ID (Intercept)          1.589                                              1.583                                         
## Var: B.ID W.X1                 0.005                                              0.003                                         
## Var: B.ID W.X2                 0.223                                              0.208                                         
## Cov: B.ID (Intercept) W.X1     0.009                                              0.015                                         
## Cov: B.ID (Intercept) W.X2    -0.200                                             -0.190                                         
## Cov: B.ID W.X1 W.X2            0.031                                              0.022                                         
## Var: Residual                  0.679                                              0.677                                         
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## BA.ReflectionOnAIUseV * W.X  3.39   2 278  .035 *  
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "BA.ReflectionOnAIUseV" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────
##  "W.X" Effect    S.E.     t     p           [95% CI]
## ────────────────────────────────────────────────────
##  0      0.590 (0.087) 6.741 <.001 *** [0.418, 0.761]
##  1      0.496 (0.088) 5.623 <.001 *** [0.323, 0.670]
##  2      0.441 (0.083) 5.283 <.001 *** [0.277, 0.605]
## ────────────────────────────────────────────────────

2.3.2 Treating W.X as X

S2.i=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X10", mods="BA.ReflectionOnAIUseV",covs=c("W.X01","W.X01BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X01 + W.X01BA.ReflectionOnAIUseV + W.X10*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.546 ***                                          1.170 **                                      
##                                (0.122)                                            (0.369)                                        
## W.X01                          -0.001                                              0.640 *                                       
##                                (0.214)                                            (0.250)                                        
## W.X01BA.ReflectionOnAIUseV      0.010                                             -0.149 *                                       
##                                (0.050)                                            (0.059)                                        
## W.X10                           0.103                                              0.479 *                                       
##                                (0.065)                                            (0.219)                                        
## BA.ReflectionOnAIUseV                                                              0.590 ***                                     
##                                                                                   (0.087)                                        
## W.X10:BA.ReflectionOnAIUseV                                                       -0.093                                         
##                                                                                   (0.052)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                                              0.155                                         
## Conditional R^2                 0.740                                              0.742                                         
## AIC                          2946.196                                           2917.085                                         
## BIC                          2999.937                                           2980.596                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           2.106                                              1.583                                         
## Var: B.ID W.X10                 0.005                                              0.003                                         
## Var: B.ID W.X01                 0.240                                              0.208                                         
## Cov: B.ID (Intercept) W.X10    -0.062                                              0.015                                         
## Cov: B.ID (Intercept) W.X01    -0.327                                             -0.190                                         
## Cov: B.ID W.X10 W.X01           0.036                                              0.022                                         
## Var: Residual                   0.678                                              0.677                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X10 * BA.ReflectionOnAIUseV  3.20   1 625  .074 .  
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.219 (0.091)  2.397  .017 *   [ 0.040, 0.398]
##  4.030 (Mean)             0.103 (0.065)  1.599  .110     [-0.023, 0.230]
##  5.272 (+ SD)            -0.012 (0.091) -0.136  .892     [-0.191, 0.167]
## ────────────────────────────────────────────────────────────────────────
S2.ii=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X01", mods="BA.ReflectionOnAIUseV",covs=c("W.X10","W.X10BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X10 + W.X10BA.ReflectionOnAIUseV + W.X01*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.546 ***                                          1.170 **                                      
##                                (0.122)                                            (0.369)                                        
## W.X10                           0.102                                              0.479 *                                       
##                                (0.197)                                            (0.219)                                        
## W.X10BA.ReflectionOnAIUseV      0.000                                             -0.093                                         
##                                (0.046)                                            (0.052)                                        
## W.X01                           0.041                                              0.640 *                                       
##                                (0.074)                                            (0.250)                                        
## BA.ReflectionOnAIUseV                                                              0.590 ***                                     
##                                                                                   (0.087)                                        
## W.X01:BA.ReflectionOnAIUseV                                                       -0.149 *                                       
##                                                                                   (0.059)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                                              0.155                                         
## Conditional R^2                 0.739                                              0.742                                         
## AIC                          2946.787                                           2917.085                                         
## BIC                          3000.527                                           2980.596                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           2.100                                              1.583                                         
## Var: B.ID W.X10                 0.001                                              0.003                                         
## Var: B.ID W.X01                 0.202                                              0.208                                         
## Cov: B.ID (Intercept) W.X10    -0.055                                              0.015                                         
## Cov: B.ID (Intercept) W.X01    -0.302                                             -0.190                                         
## Cov: B.ID W.X10 W.X01           0.008                                              0.022                                         
## Var: Residual                   0.681                                              0.677                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X01 * BA.ReflectionOnAIUseV  6.28   1 182  .013 *  
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.226 (0.104)  2.165  .032 *   [ 0.021, 0.430]
##  4.030 (Mean)             0.041 (0.074)  0.555  .579     [-0.103, 0.185]
##  5.272 (+ SD)            -0.144 (0.104) -1.380  .169     [-0.348, 0.060]
## ────────────────────────────────────────────────────────────────────────
print_table(S2.ii$model.y)
## ──────────────────────────────────────────────────────────────────────
##                              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────────────────────
## (Intercept)                     1.170 (0.369) 162.865  3.173  .002 ** 
## W.X10                           0.479 (0.219) 625.412  2.181  .030 *  
## W.X10BA.ReflectionOnAIUseV     -0.093 (0.052) 625.412 -1.790  .074 .  
## W.X01                           0.640 (0.250) 181.662  2.558  .011 *  
## BA.ReflectionOnAIUseV           0.590 (0.087) 162.865  6.741 <.001 ***
## W.X01:BA.ReflectionOnAIUseV    -0.149 (0.059) 181.662 -2.505  .013 *  
## ──────────────────────────────────────────────────────────────────────
interact_plot(S2.i$model.y, W.X10, BA.ReflectionOnAIUseV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.ReflectionOnAIUseV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S2.ii$model.y, W.X01, BA.ReflectionOnAIUseV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.ReflectionOnAIUseV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

model_summary(list(S1$model.y,S2$model.y))#,S2.i$model.y,S2.ii$model.y))
## Error in eval(expr, envir, enclos): 找不到对象'S1'

\(\theta_{D_1\rightarrow Y}=b_1+b_4W=-.604+.162W\):相对于不干预的条件,即那些被AI干预与没有干预的人M的差异。

  • 总体解读:一个正向的估计值反映了在那些被AI干预的人M更高;而负向的估计意味着与被AI干预的人相比,那些没有干预的人M更高。

  • \(D_1\) 的系数 (\(b_1\)):在性别歧视得分为零时(W=0),相对于不干预,AI干预对M的影响。负向估计值-.604意味着AI干预M更低。

  • 交互项 \(D_1 \times W\) 的系数 (\(b_4\)):

  • 意义:它量化了这个相对条件效应随着W变化一个单位而变化的程度。AI干预与W的交互效应。

  • b4=.162:说明W每增加一个单位,AI干预对M的影响增加.162个单位。此交互项显著,表明W调节了AI干预的影响。

  • 判断标准:同号同向加强(++更正/–更负);异号反向削弱(+-不那么正/-+不那么负)

\(\theta_{D_2\rightarrow Y}=b_2+b_5 W\)有类似的解释

3 BA.ReflectionOnAIUseV

3.1 Study 1

WA.LearningFromOperationalFailure.S1=PROCESS(data1, y="WA.LearningFromOperationalFailureV", x="W.X", mods="BA.ReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X*BA.ReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.779 ***                               3.636 ***                          
##                              (0.085)                                 (0.266)                             
## W.X                           0.139                                   0.181                              
##                              (0.073)                                 (0.241)                             
## BA.ReflectionOnAIUseV                                                 0.285 ***                          
##                                                                      (0.063)                             
## W.X:BA.ReflectionOnAIUseV                                            -0.010                              
##                                                                      (0.057)                             
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                   0.081                              
## Conditional R^2               0.458                                   0.459                              
## AIC                        2057.038                                2045.263                              
## BIC                        2084.028                                2081.250                              
## Num. obs.                   664                                     664                                  
## Num. groups: B.ID           166                                     166                                  
## Var: B.ID (Intercept)         0.758                                   0.631                              
## Var: B.ID W.X                 0.001                                   0.001                              
## Cov: B.ID (Intercept) W.X    -0.023                                  -0.018                              
## Var: Residual                 0.875                                   0.877                              
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X * BA.ReflectionOnAIUseV  0.03   1 495  .856    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.741 (- SD)             0.152 (0.103) 1.483  .139     [-0.049, 0.354]
##  4.013 (Mean)             0.139 (0.073) 1.916  .056 .   [-0.003, 0.282]
##  5.286 (+ SD)             0.126 (0.103) 1.226  .221     [-0.075, 0.328]
## ───────────────────────────────────────────────────────────────────────
WA.LearningFromErrors.S1=PROCESS(data1, y="WA.LearningFromErrorsV", x="W.X", mods="BA.ReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X*BA.ReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.291 ***                   2.812 ***              
##                              (0.104)                     (0.325)                 
## W.X                           0.031                       0.325                  
##                              (0.075)                     (0.247)                 
## BA.ReflectionOnAIUseV                                     0.368 ***              
##                                                          (0.077)                 
## W.X:BA.ReflectionOnAIUseV                                -0.073                  
##                                                          (0.059)                 
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.000                       0.084                  
## Conditional R^2               0.612                       0.613                  
## AIC                        2122.701                    2111.978                  
## BIC                        2149.690                    2147.965                  
## Num. obs.                   664                         664                      
## Num. groups: B.ID           166                         166                      
## Var: B.ID (Intercept)         1.395                       1.184                  
## Var: B.ID W.X                 0.094                       0.091                  
## Cov: B.ID (Intercept) W.X    -0.131                      -0.090                  
## Var: Residual                 0.832                       0.832                  
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X * BA.ReflectionOnAIUseV  1.56   1 164  .213    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.741 (- SD)             0.124 (0.105)  1.177  .241     [-0.083, 0.331]
##  4.013 (Mean)             0.031 (0.075)  0.414  .679     [-0.115, 0.177]
##  5.286 (+ SD)            -0.062 (0.105) -0.592  .555     [-0.269, 0.144]
## ────────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.S1=PROCESS(data1, y="WA.ThrivingInLearningV", x="W.X", mods="BA.ReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)##
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X*BA.ReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.702 ***                   3.019 ***              
##                              (0.093)                     (0.277)                 
## W.X                          -0.058                       0.354                  
##                              (0.062)                     (0.204)                 
## BA.ReflectionOnAIUseV                                     0.420 ***              
##                                                          (0.066)                 
## W.X:BA.ReflectionOnAIUseV                                -0.103 *                
##                                                          (0.048)                 
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.001                       0.138                  
## Conditional R^2               0.616                       0.618                  
## AIC                        1920.298                    1895.302                  
## BIC                        1947.288                    1931.288                  
## Num. obs.                   664                         664                      
## Num. groups: B.ID           166                         166                      
## Var: B.ID (Intercept)         1.132                       0.853                  
## Var: B.ID W.X                 0.018                       0.007                  
## Cov: B.ID (Intercept) W.X    -0.142                      -0.075                  
## Var: Residual                 0.624                       0.623                  
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X * BA.ReflectionOnAIUseV  4.50   1 472  .034 *  
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.ThrivingInLearningV" (Y)
## ─────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────
##  2.741 (- SD)             0.073 (0.087)  0.837  .403     [-0.098,  0.244]
##  4.013 (Mean)            -0.058 (0.062) -0.939  .348     [-0.179,  0.063]
##  5.286 (+ SD)            -0.189 (0.087) -2.164  .031 *   [-0.359, -0.018]
## ─────────────────────────────────────────────────────────────────────────
WP.LearningBehavior.S1=PROCESS(data1, y="WP.LearningBehaviorV", x="W.X", mods="BA.ReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X*BA.ReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────
##                            (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ─────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.648 ***                 1.789 ***            
##                              (0.111)                   (0.337)               
## W.X                          -0.056                     0.039                
##                              (0.093)                   (0.308)               
## BA.ReflectionOnAIUseV                                   0.463 ***            
##                                                        (0.080)               
## W.X:BA.ReflectionOnAIUseV                              -0.024                
##                                                        (0.073)               
## ─────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.000                     0.124                
## Conditional R^2               0.466                     0.467                
## AIC                        2385.192                  2357.735                
## BIC                        2412.181                  2393.721                
## Num. obs.                   664                       664                    
## Num. groups: B.ID           166                       166                    
## Var: B.ID (Intercept)         1.343                     1.001                
## Var: B.ID W.X                 0.008                     0.007                
## Cov: B.ID (Intercept) W.X    -0.103                    -0.085                
## Var: Residual                 1.426                     1.429                
## ─────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X * BA.ReflectionOnAIUseV  0.10   1 484  .747    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.LearningBehaviorV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.741 (- SD)            -0.026 (0.132) -0.195  .845     [-0.284, 0.232]
##  4.013 (Mean)            -0.056 (0.093) -0.599  .549     [-0.238, 0.127]
##  5.286 (+ SD)            -0.086 (0.132) -0.652  .515     [-0.344, 0.172]
## ────────────────────────────────────────────────────────────────────────
WP.SocialLearning.S1=PROCESS(data1, y="WP.SocialLearningV", x="W.X", mods="BA.ReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)#
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X*BA.ReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────
##                            (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ─────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.759 ***               2.112 ***          
##                              (0.104)                 (0.319)             
## W.X                          -0.178 *                 0.207              
##                              (0.079)                 (0.262)             
## BA.ReflectionOnAIUseV                                 0.410 ***          
##                                                      (0.076)             
## W.X:BA.ReflectionOnAIUseV                            -0.096              
##                                                      (0.062)             
## ─────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.004                   0.100              
## Conditional R^2               0.535                   0.537              
## AIC                        2211.535                2194.844              
## BIC                        2238.525                2230.830              
## Num. obs.                   664                     664                  
## Num. groups: B.ID           166                     166                  
## Var: B.ID (Intercept)         1.282                   1.021              
## Var: B.ID W.X                 0.007                   0.002              
## Cov: B.ID (Intercept) W.X    -0.097                  -0.040              
## Var: Residual                 1.040                   1.039              
## ─────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X * BA.ReflectionOnAIUseV  2.38   1 493  .124    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────
##  2.741 (- SD)            -0.056 (0.112) -0.502  .616     [-0.276,  0.163]
##  4.013 (Mean)            -0.178 (0.079) -2.254  .025 *   [-0.334, -0.023]
##  5.286 (+ SD)            -0.301 (0.112) -2.685  .008 **  [-0.520, -0.081]
## ─────────────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.S1=PROCESS(data1, y="WP.IndependentObservationBasedSocialLearningV", x="W.X", mods="BA.ReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X*BA.ReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.736 ***                                          2.390 ***                                     
##                              (0.114)                                            (0.363)                                        
## W.X                          -0.170                                             -0.150                                         
##                              (0.094)                                            (0.313)                                        
## BA.ReflectionOnAIUseV                                                            0.335 ***                                     
##                                                                                 (0.086)                                        
## W.X:BA.ReflectionOnAIUseV                                                       -0.005                                         
##                                                                                 (0.074)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                              0.066                                         
## Conditional R^2               0.478                                              0.479                                         
## AIC                        2410.168                                           2402.378                                         
## BIC                        2437.158                                           2438.364                                         
## Num. obs.                   664                                                664                                             
## Num. groups: B.ID           166                                                166                                             
## Var: B.ID (Intercept)         1.438                                              1.264                                         
## Var: B.ID W.X                 0.007                                              0.008                                         
## Cov: B.ID (Intercept) W.X    -0.104                                             -0.101                                         
## Var: Residual                 1.469                                              1.471                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X * BA.ReflectionOnAIUseV  0.00   1 483  .945    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.741 (- SD)            -0.164 (0.134) -1.225  .221     [-0.425, 0.098]
##  4.013 (Mean)            -0.170 (0.094) -1.803  .072 .   [-0.355, 0.015]
##  5.286 (+ SD)            -0.177 (0.134) -1.323  .186     [-0.439, 0.085]
## ────────────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.S1=PROCESS(data1, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X", mods="BA.ReflectionOnAIUseV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)##
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X*BA.ReflectionOnAIUseV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.782 ***                                  1.833 ***                             
##                              (0.112)                                    (0.339)                                
## W.X                          -0.187 *                                    0.564                                 
##                              (0.091)                                    (0.299)                                
## BA.ReflectionOnAIUseV                                                    0.486 ***                             
##                                                                         (0.080)                                
## W.X:BA.ReflectionOnAIUseV                                               -0.187 **                              
##                                                                         (0.071)                                
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                      0.103                                 
## Conditional R^2               0.483                                      0.489                                 
## AIC                        2364.000                                   2341.727                                 
## BIC                        2390.990                                   2377.713                                 
## Num. obs.                   664                                        664                                     
## Num. groups: B.ID           166                                        166                                     
## Var: B.ID (Intercept)         1.418                                      1.062                                 
## Var: B.ID W.X                 0.018                                      0.001                                 
## Cov: B.ID (Intercept) W.X    -0.159                                     -0.038                                 
## Var: Residual                 1.365                                      1.354                                 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X * BA.ReflectionOnAIUseV  6.92   1 494  .009 ** 
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────────
##  2.741 (- SD)             0.051 (0.128)  0.400  .689     [-0.199,  0.302]
##  4.013 (Mean)            -0.187 (0.090) -2.067  .039 *   [-0.364, -0.010]
##  5.286 (+ SD)            -0.425 (0.128) -3.322 <.001 *** [-0.675, -0.174]
## ─────────────────────────────────────────────────────────────────────────

3.2 Study 2

3.2.1 AI VS Control

WA.LearningFromOperationalFailure.Sb10=PROCESS(data2, y="WA.LearningFromOperationalFailureV", x="W.X10", mods="BA.ReflectionOnAIUseV",covs=c("W.X01","W.X01BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)#
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X01 + W.X01BA.ReflectionOnAIUseV + W.X10*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.363 ***                               2.819 ***                          
##                                (0.109)                                 (0.347)                             
## W.X01                          -0.508 *                                -0.084                              
##                                (0.206)                                 (0.245)                             
## W.X01BA.ReflectionOnAIUseV      0.162 ***                               0.057                              
##                                (0.048)                                 (0.058)                             
## W.X10                           0.113                                   0.442                              
##                                (0.072)                                 (0.244)                             
## BA.ReflectionOnAIUseV                                                   0.383 ***                          
##                                                                        (0.082)                             
## W.X10:BA.ReflectionOnAIUseV                                            -0.082                              
##                                                                        (0.058)                             
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.008                                   0.102                              
## Conditional R^2                 0.614                                   0.624                              
## AIC                          3016.547                                3006.983                              
## BIC                          3070.288                                3070.494                              
## Num. obs.                     978                                     978                                  
## Num. groups: B.ID             163                                     163                                  
## Var: B.ID (Intercept)           1.501                                   1.286                              
## Var: B.ID W.X10                 0.011                                   0.006                              
## Var: B.ID W.X01                 0.017                                   0.009                              
## Cov: B.ID (Intercept) W.X10    -0.129                                  -0.085                              
## Cov: B.ID (Intercept) W.X01    -0.162                                  -0.106                              
## Cov: B.ID W.X10 W.X01           0.014                                   0.007                              
## Var: Residual                   0.838                                   0.837                              
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X10 * BA.ReflectionOnAIUseV  1.99   1 766  .159    
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.214 (0.102) 2.105  .036 *   [ 0.015, 0.413]
##  4.030 (Mean)             0.113 (0.072) 1.568  .117     [-0.028, 0.254]
##  5.272 (+ SD)             0.011 (0.102) 0.112  .911     [-0.188, 0.211]
## ───────────────────────────────────────────────────────────────────────
WA.LearningFromErrors.Sb10=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X10", mods="BA.ReflectionOnAIUseV",covs=c("W.X01","W.X01BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X01 + W.X01BA.ReflectionOnAIUseV + W.X10*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.163 ***                   2.680 ***              
##                                (0.118)                     (0.384)                 
## W.X01                          -0.742 ***                  -0.460 *                
##                                (0.203)                     (0.234)                 
## W.X01BA.ReflectionOnAIUseV      0.190 ***                   0.120 *                
##                                (0.047)                     (0.056)                 
## W.X10                           0.038                       0.248                  
##                                (0.068)                     (0.231)                 
## BA.ReflectionOnAIUseV                                       0.368 ***              
##                                                            (0.091)                 
## W.X10:BA.ReflectionOnAIUseV                                -0.052                  
##                                                            (0.055)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.007                       0.092                  
## Conditional R^2                 0.710                       0.717                  
## AIC                          2982.557                    2977.818                  
## BIC                          3036.298                    3041.329                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.904                       1.708                  
## Var: B.ID W.X10                 0.006                       0.006                  
## Var: B.ID W.X01                 0.030                       0.025                  
## Cov: B.ID (Intercept) W.X10    -0.052                      -0.025                  
## Cov: B.ID (Intercept) W.X01    -0.101                      -0.065                  
## Cov: B.ID W.X10 W.X01          -0.008                      -0.010                  
## Var: Residual                   0.749                       0.749                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X10 * BA.ReflectionOnAIUseV  0.90   1 536  .342    
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.102 (0.096)  1.065  .287     [-0.086, 0.291]
##  4.030 (Mean)             0.038 (0.068)  0.553  .580     [-0.096, 0.171]
##  5.272 (+ SD)            -0.027 (0.096) -0.283  .777     [-0.216, 0.161]
## ────────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.Sb10=PROCESS(data2, y="WA.ThrivingInLearningV", x="W.X10", mods="BA.ReflectionOnAIUseV",covs=c("W.X01","W.X01BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X01 + W.X01BA.ReflectionOnAIUseV + W.X10*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.291 ***                   2.431 ***              
##                                (0.109)                     (0.340)                 
## W.X01                          -0.464 *                     0.065                  
##                                (0.202)                     (0.237)                 
## W.X01BA.ReflectionOnAIUseV      0.117 *                    -0.014                  
##                                (0.047)                     (0.056)                 
## W.X10                          -0.026                       0.238                  
##                                (0.061)                     (0.208)                 
## BA.ReflectionOnAIUseV                                       0.461 ***              
##                                                            (0.081)                 
## W.X10:BA.ReflectionOnAIUseV                                -0.066                  
##                                                            (0.049)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                       0.135                  
## Conditional R^2                 0.711                       0.718                  
## AIC                          2823.632                    2804.873                  
## BIC                          2877.373                    2868.384                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.642                       1.326                  
## Var: B.ID W.X10                 0.001                       0.001                  
## Var: B.ID W.X01                 0.192                       0.180                  
## Cov: B.ID (Intercept) W.X10    -0.035                       0.006                  
## Cov: B.ID (Intercept) W.X01    -0.273                      -0.190                  
## Cov: B.ID W.X10 W.X01           0.006                       0.008                  
## Var: Residual                   0.613                       0.612                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X10 * BA.ReflectionOnAIUseV  1.77   1 645  .184    
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.ThrivingInLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.055 (0.087)  0.636  .525     [-0.115, 0.225]
##  4.030 (Mean)            -0.026 (0.061) -0.430  .667     [-0.147, 0.094]
##  5.272 (+ SD)            -0.108 (0.087) -1.244  .214     [-0.278, 0.062]
## ────────────────────────────────────────────────────────────────────────
WP.LearningBehavior.Sb10=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X10", mods="BA.ReflectionOnAIUseV",covs=c("W.X01","W.X01BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X01 + W.X01BA.ReflectionOnAIUseV + W.X10*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────
##                              (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ───────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.549 ***                 1.242 ***            
##                                (0.123)                   (0.372)               
## W.X01                          -0.419 *                  -0.101                
##                                (0.205)                   (0.237)               
## W.X01BA.ReflectionOnAIUseV      0.108 *                   0.029                
##                                (0.048)                   (0.056)               
## W.X10                           0.124                     0.012                
##                                (0.068)                   (0.232)               
## BA.ReflectionOnAIUseV                                     0.573 ***            
##                                                          (0.088)               
## W.X10:BA.ReflectionOnAIUseV                               0.028                
##                                                          (0.055)               
## ───────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                     0.194                
## Conditional R^2                 0.724                     0.730                
## AIC                          3006.970                  2974.026                
## BIC                          3060.710                  3037.538                
## Num. obs.                     978                       978                    
## Num. groups: B.ID             163                       163                    
## Var: B.ID (Intercept)           2.076                     1.578                
## Var: B.ID W.X10                 0.003                     0.003                
## Var: B.ID W.X01                 0.049                     0.038                
## Cov: B.ID (Intercept) W.X10    -0.008                    -0.033                
## Cov: B.ID (Intercept) W.X01    -0.166                    -0.096                
## Cov: B.ID W.X10 W.X01          -0.009                    -0.006                
## Var: Residual                   0.757                     0.758                
## ───────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X10 * BA.ReflectionOnAIUseV  0.26   1 641  .613    
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.LearningBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.090 (0.097) 0.927  .354     [-0.100, 0.279]
##  4.030 (Mean)             0.124 (0.068) 1.818  .069 .   [-0.010, 0.258]
##  5.272 (+ SD)             0.159 (0.097) 1.644  .101     [-0.031, 0.348]
## ───────────────────────────────────────────────────────────────────────
WP.SocialLearning.Sb10=PROCESS(data2, y="WP.SocialLearningV", x="W.X10", mods="BA.ReflectionOnAIUseV",covs=c("W.X01","W.X01BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X01 + W.X01BA.ReflectionOnAIUseV + W.X10*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────
##                              (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ───────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.656 ***               2.030 ***          
##                                (0.109)                 (0.346)             
## W.X01                           0.151                   0.104              
##                                (0.205)                 (0.231)             
## W.X01BA.ReflectionOnAIUseV     -0.020                  -0.008              
##                                (0.048)                 (0.055)             
## W.X10                           0.115                  -0.410              
##                                (0.069)                 (0.232)             
## BA.ReflectionOnAIUseV                                   0.404 ***          
##                                                        (0.082)             
## W.X10:BA.ReflectionOnAIUseV                             0.130 *            
##                                                        (0.055)             
## ───────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                   0.132              
## Conditional R^2                 0.688                   0.688              
## AIC                          2965.306                2937.362              
## BIC                          3019.046                3000.873              
## Num. obs.                     978                     978                  
## Num. groups: B.ID             163                     163                  
## Var: B.ID (Intercept)           1.566                   1.325              
## Var: B.ID W.X10                 0.030                   0.019              
## Var: B.ID W.X01                 0.015                   0.013              
## Cov: B.ID (Intercept) W.X10     0.045                  -0.043              
## Cov: B.ID (Intercept) W.X01     0.036                   0.027              
## Cov: B.ID W.X10 W.X01          -0.019                  -0.016              
## Var: Residual                   0.742                   0.741              
## ───────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X10 * BA.ReflectionOnAIUseV  5.60   1 482  .018 *  
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)            -0.047 (0.097) -0.484  .629     [-0.236, 0.143]
##  4.030 (Mean)             0.115 (0.068)  1.684  .093 .   [-0.019, 0.249]
##  5.272 (+ SD)             0.277 (0.097)  2.865  .004 **  [ 0.087, 0.466]
## ────────────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.Sb10=PROCESS(data2, y="WP.IndependentObservationBasedSocialLearningV", x="W.X10", mods="BA.ReflectionOnAIUseV",covs=c("W.X01","W.X01BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X01 + W.X01BA.ReflectionOnAIUseV + W.X10*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.695 ***                                          2.103 ***                                     
##                                (0.121)                                            (0.392)                                        
## W.X01                           0.111                                             -0.012                                         
##                                (0.236)                                            (0.271)                                        
## W.X01BA.ReflectionOnAIUseV     -0.008                                              0.022                                         
##                                (0.055)                                            (0.064)                                        
## W.X10                           0.172 *                                           -0.548 *                                       
##                                (0.081)                                            (0.272)                                        
## BA.ReflectionOnAIUseV                                                              0.395 ***                                     
##                                                                                   (0.093)                                        
## W.X10:BA.ReflectionOnAIUseV                                                        0.179 **                                      
##                                                                                   (0.064)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                                              0.115                                         
## Conditional R^2                 0.652                                              0.653                                         
## AIC                          3258.907                                           3232.342                                         
## BIC                          3312.648                                           3295.854                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           1.878                                              1.652                                         
## Var: B.ID W.X10                 0.036                                              0.004                                         
## Var: B.ID W.X01                 0.001                                              0.000                                         
## Cov: B.ID (Intercept) W.X10     0.042                                             -0.077                                         
## Cov: B.ID (Intercept) W.X01     0.034                                              0.011                                         
## Cov: B.ID W.X10 W.X01          -0.002                                             -0.001                                         
## Var: Residual                   1.039                                              1.038                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X10 * BA.ReflectionOnAIUseV  7.70   1 787  .006 ** 
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)            -0.050 (0.113) -0.443  .658     [-0.272, 0.172]
##  4.030 (Mean)             0.172 (0.080)  2.149  .032 *   [ 0.015, 0.328]
##  5.272 (+ SD)             0.394 (0.113)  3.481 <.001 *** [ 0.172, 0.615]
## ────────────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.Sb10=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X10", mods="BA.ReflectionOnAIUseV",covs=c("W.X01","W.X01BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X01, W.X01BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X01 + W.X01BA.ReflectionOnAIUseV + W.X10*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.617 ***                                  1.956 ***                             
##                                (0.111)                                    (0.354)                                
## W.X01                           0.139                                      0.220                                 
##                                (0.250)                                    (0.286)                                
## W.X01BA.ReflectionOnAIUseV     -0.018                                     -0.038                                 
##                                (0.058)                                    (0.068)                                
## W.X10                           0.058                                     -0.271                                 
##                                (0.082)                                    (0.275)                                
## BA.ReflectionOnAIUseV                                                      0.412 ***                             
##                                                                           (0.084)                                
## W.X10:BA.ReflectionOnAIUseV                                                0.082                                 
##                                                                           (0.065)                                
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                                      0.105                                 
## Conditional R^2                 0.609                                      0.606                                 
## AIC                          3264.231                                   3244.414                                 
## BIC                          3317.971                                   3307.926                                 
## Num. obs.                     978                                        978                                     
## Num. groups: B.ID             163                                        163                                     
## Var: B.ID (Intercept)           1.489                                      1.240                                 
## Var: B.ID W.X10                 0.037                                      0.002                                 
## Var: B.ID W.X01                 0.055                                      0.087                                 
## Cov: B.ID (Intercept) W.X10     0.100                                      0.047                                 
## Cov: B.ID (Intercept) W.X01     0.096                                      0.087                                 
## Cov: B.ID W.X10 W.X01          -0.032                                      0.003                                 
## Var: Residual                   1.060                                      1.068                                 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X10 * BA.ReflectionOnAIUseV  1.57   1 626  .210    
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)            -0.043 (0.116) -0.375  .708     [-0.270, 0.183]
##  4.030 (Mean)             0.058 (0.082)  0.713  .477     [-0.102, 0.219]
##  5.272 (+ SD)             0.160 (0.116)  1.382  .168     [-0.067, 0.387]
## ────────────────────────────────────────────────────────────────────────

3.2.2 AI VS Self

WA.LearningFromOperationalFailure.Sb01=PROCESS(data2, y="WA.LearningFromOperationalFailureV", x="W.X01", mods="BA.ReflectionOnAIUseV",covs=c("W.X10","W.X10BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X10 + W.X10BA.ReflectionOnAIUseV + W.X01*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.363 ***                               2.819 ***                          
##                                (0.109)                                 (0.347)                             
## W.X10                           0.269                                   0.442                              
##                                (0.207)                                 (0.244)                             
## W.X10BA.ReflectionOnAIUseV     -0.039                                  -0.082                              
##                                (0.048)                                 (0.058)                             
## W.X01                           0.146 *                                -0.084                              
##                                (0.072)                                 (0.245)                             
## BA.ReflectionOnAIUseV                                                   0.383 ***                          
##                                                                        (0.082)                             
## W.X01:BA.ReflectionOnAIUseV                                             0.057                              
##                                                                        (0.058)                             
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                                   0.102                              
## Conditional R^2                 0.624                                   0.624                              
## AIC                          3025.907                                3006.983                              
## BIC                          3079.648                                3070.494                              
## Num. obs.                     978                                     978                                  
## Num. groups: B.ID             163                                     163                                  
## Var: B.ID (Intercept)           1.502                                   1.286                              
## Var: B.ID W.X10                 0.008                                   0.006                              
## Var: B.ID W.X01                 0.003                                   0.009                              
## Cov: B.ID (Intercept) W.X10    -0.108                                  -0.085                              
## Cov: B.ID (Intercept) W.X01    -0.069                                  -0.106                              
## Cov: B.ID W.X10 W.X01           0.005                                   0.007                              
## Var: Residual                   0.839                                   0.837                              
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X01 * BA.ReflectionOnAIUseV  0.96   1 742  .327    
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.075 (0.102) 0.736  .462     [-0.125, 0.275]
##  4.030 (Mean)             0.146 (0.072) 2.023  .043 *   [ 0.005, 0.287]
##  5.272 (+ SD)             0.216 (0.102) 2.124  .034 *   [ 0.017, 0.416]
## ───────────────────────────────────────────────────────────────────────
WA.LearningFromErrors.Sb01=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X01", mods="BA.ReflectionOnAIUseV",covs=c("W.X10","W.X10BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X10 + W.X10BA.ReflectionOnAIUseV + W.X01*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.163 ***                   2.680 ***              
##                                (0.118)                     (0.384)                 
## W.X10                           0.288                       0.248                  
##                                (0.203)                     (0.231)                 
## W.X10BA.ReflectionOnAIUseV     -0.062                      -0.052                  
##                                (0.047)                     (0.055)                 
## W.X01                           0.022                      -0.460 *                
##                                (0.069)                     (0.234)                 
## BA.ReflectionOnAIUseV                                       0.368 ***              
##                                                            (0.091)                 
## W.X01:BA.ReflectionOnAIUseV                                 0.120 *                
##                                                            (0.056)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                       0.092                  
## Conditional R^2                 0.719                       0.717                  
## AIC                          2995.068                    2977.818                  
## BIC                          3048.809                    3041.329                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.904                       1.708                  
## Var: B.ID W.X10                 0.005                       0.006                  
## Var: B.ID W.X01                 0.038                       0.025                  
## Cov: B.ID (Intercept) W.X10    -0.016                      -0.025                  
## Cov: B.ID (Intercept) W.X01     0.009                      -0.065                  
## Cov: B.ID W.X10 W.X01          -0.014                      -0.010                  
## Var: Residual                   0.749                       0.749                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X01 * BA.ReflectionOnAIUseV  4.65   1 315  .032 *  
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)            -0.127 (0.098) -1.290  .198     [-0.319, 0.066]
##  4.030 (Mean)             0.022 (0.069)  0.321  .749     [-0.114, 0.158]
##  5.272 (+ SD)             0.171 (0.098)  1.744  .082 .   [-0.021, 0.363]
## ────────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.Sb01=PROCESS(data2, y="WA.ThrivingInLearningV", x="W.X01", mods="BA.ReflectionOnAIUseV",covs=c("W.X10","W.X10BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X10 + W.X10BA.ReflectionOnAIUseV + W.X01*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.291 ***                   2.431 ***              
##                                (0.109)                     (0.340)                 
## W.X10                           0.072                       0.238                  
##                                (0.187)                     (0.208)                 
## W.X10BA.ReflectionOnAIUseV     -0.024                      -0.066                  
##                                (0.044)                     (0.049)                 
## W.X01                           0.009                       0.065                  
##                                (0.069)                     (0.237)                 
## BA.ReflectionOnAIUseV                                       0.461 ***              
##                                                            (0.081)                 
## W.X01:BA.ReflectionOnAIUseV                                -0.014                  
##                                                            (0.056)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                       0.135                  
## Conditional R^2                 0.718                       0.718                  
## AIC                          2828.713                    2804.873                  
## BIC                          2882.454                    2868.384                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.645                       1.326                  
## Var: B.ID W.X10                 0.000                       0.000                  
## Var: B.ID W.X01                 0.171                       0.180                  
## Cov: B.ID (Intercept) W.X10    -0.020                       0.006                  
## Cov: B.ID (Intercept) W.X01    -0.194                      -0.190                  
## Cov: B.ID W.X10 W.X01           0.002                       0.008                  
## Var: Residual                   0.613                       0.612                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X01 * BA.ReflectionOnAIUseV  0.06   1 188  .803    
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.ThrivingInLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.026 (0.099)  0.264  .792     [-0.167, 0.219]
##  4.030 (Mean)             0.009 (0.070)  0.123  .902     [-0.128, 0.145]
##  5.272 (+ SD)            -0.009 (0.099) -0.090  .929     [-0.202, 0.184]
## ────────────────────────────────────────────────────────────────────────
WP.LearningBehavior.Sb01=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X01", mods="BA.ReflectionOnAIUseV",covs=c("W.X10","W.X10BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X10 + W.X10BA.ReflectionOnAIUseV + W.X01*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────
##                              (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ───────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.549 ***                 1.242 ***            
##                                (0.123)                   (0.372)               
## W.X10                          -0.193                     0.012                
##                                (0.201)                   (0.232)               
## W.X10BA.ReflectionOnAIUseV      0.079                     0.028                
##                                (0.047)                   (0.055)               
## W.X01                           0.017                    -0.101                
##                                (0.070)                   (0.237)               
## BA.ReflectionOnAIUseV                                     0.573 ***            
##                                                          (0.088)               
## W.X01:BA.ReflectionOnAIUseV                               0.029                
##                                                          (0.056)               
## ───────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                     0.194                
## Conditional R^2                 0.724                     0.730                
## AIC                          3008.860                  2974.026                
## BIC                          3062.601                  3037.538                
## Num. obs.                     978                       978                    
## Num. groups: B.ID             163                       163                    
## Var: B.ID (Intercept)           2.076                     1.578                
## Var: B.ID W.X10                 0.003                     0.003                
## Var: B.ID W.X01                 0.042                     0.038                
## Cov: B.ID (Intercept) W.X10    -0.078                    -0.033                
## Cov: B.ID (Intercept) W.X01    -0.074                    -0.096                
## Cov: B.ID W.X10 W.X01           0.003                    -0.006                
## Var: Residual                   0.761                     0.758                
## ───────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X01 * BA.ReflectionOnAIUseV  0.27   1 310  .604    
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.LearningBehaviorV" (Y)
## ────────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────
##  2.788 (- SD)            -0.019 (0.099) -0.196  .845     [-0.214, 0.175]
##  4.030 (Mean)             0.017 (0.070)  0.241  .810     [-0.120, 0.154]
##  5.272 (+ SD)             0.053 (0.099)  0.536  .592     [-0.141, 0.247]
## ────────────────────────────────────────────────────────────────────────
WP.SocialLearning.Sb01=PROCESS(data2, y="WP.SocialLearningV", x="W.X01", mods="BA.ReflectionOnAIUseV",covs=c("W.X10","W.X10BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X10 + W.X10BA.ReflectionOnAIUseV + W.X01*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────
##                              (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ───────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.656 ***               2.030 ***          
##                                (0.109)                 (0.346)             
## W.X10                          -0.688 ***              -0.410              
##                                (0.201)                 (0.232)             
## W.X10BA.ReflectionOnAIUseV      0.199 ***               0.130 *            
##                                (0.047)                 (0.055)             
## W.X01                           0.073                   0.104              
##                                (0.068)                 (0.231)             
## BA.ReflectionOnAIUseV                                   0.404 ***          
##                                                        (0.082)             
## W.X01:BA.ReflectionOnAIUseV                            -0.008              
##                                                        (0.055)             
## ───────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.010                   0.132              
## Conditional R^2                 0.678                   0.688              
## AIC                          2950.498                2937.362              
## BIC                          3004.239                3000.873              
## Num. obs.                     978                     978                  
## Num. groups: B.ID             163                     163                  
## Var: B.ID (Intercept)           1.567                   1.325              
## Var: B.ID W.X10                 0.024                   0.019              
## Var: B.ID W.X01                 0.012                   0.013              
## Cov: B.ID (Intercept) W.X10    -0.083                  -0.043              
## Cov: B.ID (Intercept) W.X01     0.023                   0.027              
## Cov: B.ID W.X10 W.X01          -0.016                  -0.016              
## Var: Residual                   0.741                   0.741              
## ───────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X01 * BA.ReflectionOnAIUseV  0.02   1 542  .888    
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.082 (0.096) 0.856  .392     [-0.106, 0.271]
##  4.030 (Mean)             0.073 (0.068) 1.071  .285     [-0.061, 0.206]
##  5.272 (+ SD)             0.063 (0.096) 0.657  .511     [-0.125, 0.252]
## ───────────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.Sb01=PROCESS(data2, y="WP.IndependentObservationBasedSocialLearningV", x="W.X01", mods="BA.ReflectionOnAIUseV",covs=c("W.X10","W.X10BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X10 + W.X10BA.ReflectionOnAIUseV + W.X01*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.695 ***                                          2.103 ***                                     
##                                (0.121)                                            (0.392)                                        
## W.X10                          -0.794 ***                                         -0.548 *                                       
##                                (0.230)                                            (0.272)                                        
## W.X10BA.ReflectionOnAIUseV      0.240 ***                                          0.179 **                                      
##                                (0.054)                                            (0.064)                                        
## W.X01                           0.078                                             -0.012                                         
##                                (0.080)                                            (0.271)                                        
## BA.ReflectionOnAIUseV                                                              0.395 ***                                     
##                                                                                   (0.093)                                        
## W.X01:BA.ReflectionOnAIUseV                                                        0.022                                         
##                                                                                   (0.064)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.012                                              0.115                                         
## Conditional R^2                 0.642                                              0.653                                         
## AIC                          3242.107                                           3232.342                                         
## BIC                          3295.848                                           3295.854                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           1.882                                              1.652                                         
## Var: B.ID W.X10                 0.009                                              0.004                                         
## Var: B.ID W.X01                 0.000                                              0.000                                         
## Cov: B.ID (Intercept) W.X10    -0.113                                             -0.077                                         
## Cov: B.ID (Intercept) W.X01     0.024                                              0.011                                         
## Cov: B.ID W.X10 W.X01          -0.002                                             -0.001                                         
## Var: Residual                   1.037                                              1.038                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X01 * BA.ReflectionOnAIUseV  0.12   1 810  .728    
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.050 (0.113) 0.447  .655     [-0.171, 0.272]
##  4.030 (Mean)             0.078 (0.080) 0.980  .327     [-0.078, 0.235]
##  5.272 (+ SD)             0.106 (0.113) 0.939  .348     [-0.115, 0.327]
## ───────────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.Sb01=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X01", mods="BA.ReflectionOnAIUseV",covs=c("W.X10","W.X10BA.ReflectionOnAIUseV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.ReflectionOnAIUseV
## - Covariates (C) : W.X10, W.X10BA.ReflectionOnAIUseV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X10 + W.X10BA.ReflectionOnAIUseV + W.X01*BA.ReflectionOnAIUseV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.617 ***                                  1.956 ***                             
##                                (0.111)                                    (0.354)                                
## W.X10                          -0.632 **                                  -0.271                                 
##                                (0.243)                                    (0.275)                                
## W.X10BA.ReflectionOnAIUseV      0.171 **                                   0.082                                 
##                                (0.057)                                    (0.065)                                
## W.X01                           0.067                                      0.220                                 
##                                (0.082)                                    (0.286)                                
## BA.ReflectionOnAIUseV                                                      0.412 ***                             
##                                                                           (0.084)                                
## W.X01:BA.ReflectionOnAIUseV                                               -0.038                                 
##                                                                           (0.068)                                
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.006                                      0.105                                 
## Conditional R^2                 0.598                                      0.606                                 
## AIC                          3256.619                                   3244.414                                 
## BIC                          3310.359                                   3307.926                                 
## Num. obs.                     978                                        978                                     
## Num. groups: B.ID             163                                        163                                     
## Var: B.ID (Intercept)           1.483                                      1.240                                 
## Var: B.ID W.X10                 0.032                                      0.002                                 
## Var: B.ID W.X01                 0.041                                      0.087                                 
## Cov: B.ID (Intercept) W.X10    -0.002                                      0.047                                 
## Cov: B.ID (Intercept) W.X01     0.092                                      0.087                                 
## Cov: B.ID W.X10 W.X01          -0.034                                      0.003                                 
## Var: Residual                   1.063                                      1.068                                 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────────
##                                   F df1 df2     p    
## ─────────────────────────────────────────────────────
## W.X01 * BA.ReflectionOnAIUseV  0.31   1 239  .578    
## ─────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.ReflectionOnAIUseV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.788 (- SD)             0.114 (0.117) 0.979  .329     [-0.115, 0.344]
##  4.030 (Mean)             0.067 (0.083) 0.817  .415     [-0.094, 0.229]
##  5.272 (+ SD)             0.021 (0.117) 0.176  .861     [-0.209, 0.250]
## ───────────────────────────────────────────────────────────────────────

4 BA.CapabilityV

4.1 Study 1

WA.LearningFromOperationalFailure.S1=PROCESS(data1, y="WA.LearningFromOperationalFailureV", x="W.X", mods="BA.CapabilityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X*BA.CapabilityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.779 ***                               3.800 ***                          
##                              (0.085)                                 (0.252)                             
## W.X                           0.139                                   0.058                              
##                              (0.073)                                 (0.226)                             
## BA.CapabilityV                                                        0.233 ***                          
##                                                                      (0.057)                             
## W.X:BA.CapabilityV                                                    0.019                              
##                                                                      (0.051)                             
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                   0.077                              
## Conditional R^2               0.458                                   0.460                              
## AIC                        2057.038                                2046.683                              
## BIC                        2084.028                                2082.669                              
## Num. obs.                   664                                     664                                  
## Num. groups: B.ID           166                                     166                                  
## Var: B.ID (Intercept)         0.758                                   0.651                              
## Var: B.ID W.X                 0.001                                   0.002                              
## Cov: B.ID (Intercept) W.X    -0.023                                  -0.032                              
## Var: Residual                 0.875                                   0.876                              
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ────────────────────────────────────────────
##                          F df1 df2     p    
## ────────────────────────────────────────────
## W.X * BA.CapabilityV  0.14   1 492  .705    
## ────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.     t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.768 (- SD)      0.112 (0.103) 1.086  .278     [-0.090, 0.313]
##  4.197 (Mean)      0.139 (0.073) 1.916  .056 .   [-0.003, 0.282]
##  5.625 (+ SD)      0.167 (0.103) 1.622  .105     [-0.035, 0.369]
## ────────────────────────────────────────────────────────────────
WA.LearningFromErrors.S1=PROCESS(data1, y="WA.LearningFromErrorsV", x="W.X", mods="BA.CapabilityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X*BA.CapabilityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.291 ***                   2.992 ***              
##                              (0.104)                     (0.307)                 
## W.X                           0.031                      -0.010                  
##                              (0.075)                     (0.233)                 
## BA.CapabilityV                                            0.309 ***              
##                                                          (0.069)                 
## W.X:BA.CapabilityV                                        0.010                  
##                                                          (0.052)                 
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.000                       0.094                  
## Conditional R^2               0.612                       0.613                  
## AIC                        2122.701                    2110.174                  
## BIC                        2149.690                    2146.161                  
## Num. obs.                   664                         664                      
## Num. groups: B.ID           166                         166                      
## Var: B.ID (Intercept)         1.395                       1.209                  
## Var: B.ID W.X                 0.094                       0.099                  
## Cov: B.ID (Intercept) W.X    -0.131                      -0.140                  
## Var: Residual                 0.832                       0.832                  
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────
##                          F df1 df2     p    
## ────────────────────────────────────────────
## W.X * BA.CapabilityV  0.04   1 164  .852    
## ────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.     t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.768 (- SD)      0.017 (0.106) 0.159  .874     [-0.191, 0.225]
##  4.197 (Mean)      0.031 (0.075) 0.412  .681     [-0.116, 0.178]
##  5.625 (+ SD)      0.045 (0.106) 0.424  .672     [-0.163, 0.253]
## ────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.S1=PROCESS(data1, y="WA.ThrivingInLearningV", x="W.X", mods="BA.CapabilityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X*BA.CapabilityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.702 ***                   3.566 ***              
##                              (0.093)                     (0.275)                 
## W.X                          -0.058                       0.137                  
##                              (0.062)                     (0.193)                 
## BA.CapabilityV                                            0.271 ***              
##                                                          (0.062)                 
## W.X:BA.CapabilityV                                       -0.046                  
##                                                          (0.043)                 
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.001                       0.078                  
## Conditional R^2               0.616                       0.617                  
## AIC                        1920.298                    1913.420                  
## BIC                        1947.288                    1949.406                  
## Num. obs.                   664                         664                      
## Num. groups: B.ID           166                         166                      
## Var: B.ID (Intercept)         1.132                       0.988                  
## Var: B.ID W.X                 0.018                       0.014                  
## Cov: B.ID (Intercept) W.X    -0.142                      -0.117                  
## Var: Residual                 0.624                       0.625                  
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ────────────────────────────────────────────
##                          F df1 df2     p    
## ────────────────────────────────────────────
## W.X * BA.CapabilityV  1.14   1 450  .286    
## ────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.ThrivingInLearningV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.768 (- SD)      0.009 (0.088)  0.097  .923     [-0.163, 0.181]
##  4.197 (Mean)     -0.058 (0.062) -0.932  .352     [-0.179, 0.064]
##  5.625 (+ SD)     -0.124 (0.088) -1.415  .158     [-0.296, 0.048]
## ─────────────────────────────────────────────────────────────────
WP.LearningBehavior.S1=PROCESS(data1, y="WP.LearningBehaviorV", x="W.X", mods="BA.CapabilityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X*BA.CapabilityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────
##                            (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ─────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.648 ***                 2.502 ***            
##                              (0.111)                   (0.333)               
## W.X                          -0.056                    -0.153                
##                              (0.093)                   (0.289)               
## BA.CapabilityV                                          0.273 ***            
##                                                        (0.075)               
## W.X:BA.CapabilityV                                      0.023                
##                                                        (0.065)               
## ─────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.000                     0.062                
## Conditional R^2               0.466                     0.468                
## AIC                        2385.192                  2377.903                
## BIC                        2412.181                  2413.889                
## Num. obs.                   664                       664                    
## Num. groups: B.ID           166                       166                    
## Var: B.ID (Intercept)         1.343                     1.199                
## Var: B.ID W.X                 0.008                     0.011                
## Cov: B.ID (Intercept) W.X    -0.103                    -0.117                
## Var: Residual                 1.426                     1.428                
## ─────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ────────────────────────────────────────────
##                          F df1 df2     p    
## ────────────────────────────────────────────
## W.X * BA.CapabilityV  0.13   1 478  .722    
## ────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.LearningBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.768 (- SD)     -0.089 (0.132) -0.675  .500     [-0.347, 0.169]
##  4.197 (Mean)     -0.056 (0.093) -0.598  .550     [-0.238, 0.127]
##  5.625 (+ SD)     -0.023 (0.132) -0.171  .864     [-0.281, 0.236]
## ─────────────────────────────────────────────────────────────────
WP.SocialLearning.S1=PROCESS(data1, y="WP.SocialLearningV", x="W.X", mods="BA.CapabilityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)#
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X*BA.CapabilityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────
##                            (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ─────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.759 ***               2.106 ***          
##                              (0.104)                 (0.295)             
## W.X                          -0.178 *                 0.197              
##                              (0.079)                 (0.246)             
## BA.CapabilityV                                        0.394 ***          
##                                                      (0.067)             
## W.X:BA.CapabilityV                                   -0.090              
##                                                      (0.055)             
## ─────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.004                   0.116              
## Conditional R^2               0.535                   0.537              
## AIC                        2211.535                2190.279              
## BIC                        2238.525                2226.265              
## Num. obs.                   664                     664                  
## Num. groups: B.ID           166                     166                  
## Var: B.ID (Intercept)         1.282                   0.978              
## Var: B.ID W.X                 0.007                   0.001              
## Cov: B.ID (Intercept) W.X    -0.097                  -0.033              
## Var: Residual                 1.040                   1.038              
## ─────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ────────────────────────────────────────────
##                          F df1 df2     p    
## ────────────────────────────────────────────
## W.X * BA.CapabilityV  2.61   1 494  .107    
## ────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p             [95% CI]
## ──────────────────────────────────────────────────────────────────
##  2.768 (- SD)     -0.051 (0.112) -0.451  .652     [-0.270,  0.169]
##  4.197 (Mean)     -0.178 (0.079) -2.255  .025 *   [-0.334, -0.023]
##  5.625 (+ SD)     -0.306 (0.112) -2.737  .006 **  [-0.526, -0.087]
## ──────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.S1=PROCESS(data1, y="WP.IndependentObservationBasedSocialLearningV", x="W.X", mods="BA.CapabilityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X*BA.CapabilityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.736 ***                                          2.322 ***                                     
##                              (0.114)                                            (0.337)                                        
## W.X                          -0.170                                             -0.053                                         
##                              (0.094)                                            (0.293)                                        
## BA.CapabilityV                                                                   0.337 ***                                     
##                                                                                 (0.076)                                        
## W.X:BA.CapabilityV                                                              -0.028                                         
##                                                                                 (0.066)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                              0.078                                         
## Conditional R^2               0.478                                              0.479                                         
## AIC                        2410.168                                           2399.176                                         
## BIC                        2437.158                                           2435.163                                         
## Num. obs.                   664                                                664                                             
## Num. groups: B.ID           166                                                166                                             
## Var: B.ID (Intercept)         1.438                                              1.215                                         
## Var: B.ID W.X                 0.007                                              0.006                                         
## Cov: B.ID (Intercept) W.X    -0.104                                             -0.085                                         
## Var: Residual                 1.469                                              1.472                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ────────────────────────────────────────────
##                          F df1 df2     p    
## ────────────────────────────────────────────
## W.X * BA.CapabilityV  0.18   1 487  .673    
## ────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.768 (- SD)     -0.130 (0.133) -0.976  .329     [-0.392, 0.131]
##  4.197 (Mean)     -0.170 (0.094) -1.804  .072 .   [-0.355, 0.015]
##  5.625 (+ SD)     -0.210 (0.133) -1.574  .116     [-0.472, 0.052]
## ─────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.S1=PROCESS(data1, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X", mods="BA.CapabilityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)##
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X*BA.CapabilityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.782 ***                                  1.891 ***                             
##                              (0.112)                                    (0.315)                                
## W.X                          -0.187 *                                    0.448                                 
##                              (0.091)                                    (0.281)                                
## BA.CapabilityV                                                           0.451 ***                             
##                                                                         (0.071)                                
## W.X:BA.CapabilityV                                                      -0.151 *                               
##                                                                         (0.063)                                
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                      0.116                                 
## Conditional R^2               0.483                                      0.488                                 
## AIC                        2364.000                                   2338.694                                 
## BIC                        2390.990                                   2374.680                                 
## Num. obs.                   664                                        664                                     
## Num. groups: B.ID           166                                        166                                     
## Var: B.ID (Intercept)         1.418                                      1.026                                 
## Var: B.ID W.X                 0.018                                      0.002                                 
## Cov: B.ID (Intercept) W.X    -0.159                                     -0.041                                 
## Var: Residual                 1.365                                      1.357                                 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ────────────────────────────────────────────
##                          F df1 df2     p    
## ────────────────────────────────────────────
## W.X * BA.CapabilityV  5.69   1 493  .017 *  
## ────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p             [95% CI]
## ──────────────────────────────────────────────────────────────────
##  2.768 (- SD)      0.029 (0.128)  0.229  .819     [-0.222,  0.280]
##  4.197 (Mean)     -0.187 (0.090) -2.064  .040 *   [-0.364, -0.009]
##  5.625 (+ SD)     -0.403 (0.128) -3.146  .002 **  [-0.654, -0.152]
## ──────────────────────────────────────────────────────────────────

4.2 Study 2

4.2.1 AI VS Control

WA.LearningFromOperationalFailure.Sb10=PROCESS(data2, y="WA.LearningFromOperationalFailureV", x="W.X10", mods="BA.CapabilityV",covs=c("W.X01","W.X01BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)#
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X01, W.X01BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X01 + W.X01BA.CapabilityV + W.X10*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.363 ***                               2.652 ***                          
##                                (0.109)                                 (0.315)                             
## W.X01                          -0.117                                   0.309                              
##                                (0.195)                                 (0.228)                             
## W.X01BA.CapabilityV             0.063                                  -0.039                              
##                                (0.043)                                 (0.051)                             
## W.X10                           0.113                                   0.480 *                            
##                                (0.072)                                 (0.228)                             
## BA.CapabilityV                                                          0.408 ***                          
##                                                                        (0.071)                             
## W.X10:BA.CapabilityV                                                   -0.087                              
##                                                                        (0.052)                             
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                                   0.120                              
## Conditional R^2                 0.616                                   0.622                              
## AIC                          3024.903                                3006.021                              
## BIC                          3078.644                                3069.532                              
## Num. obs.                     978                                     978                                  
## Num. groups: B.ID             163                                     163                                  
## Var: B.ID (Intercept)           1.499                                   1.187                              
## Var: B.ID W.X10                 0.011                                   0.004                              
## Var: B.ID W.X01                 0.009                                   0.001                              
## Cov: B.ID (Intercept) W.X10    -0.130                                  -0.067                              
## Cov: B.ID (Intercept) W.X01    -0.113                                  -0.041                              
## Cov: B.ID W.X10 W.X01           0.010                                   0.002                              
## Var: Residual                   0.843                                   0.841                              
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X10 * BA.CapabilityV  2.87   1 780  .090 .  
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.799 (- SD)      0.235 (0.102)  2.306  .021 *   [ 0.035, 0.434]
##  4.196 (Mean)      0.113 (0.072)  1.566  .118     [-0.028, 0.254]
##  5.593 (+ SD)     -0.009 (0.102) -0.092  .927     [-0.209, 0.190]
## ─────────────────────────────────────────────────────────────────
WA.LearningFromErrors.Sb10=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X10", mods="BA.CapabilityV",covs=c("W.X01","W.X01BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X01, W.X01BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X01 + W.X01BA.CapabilityV + W.X10*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.163 ***                   2.710 ***              
##                                (0.118)                     (0.356)                 
## W.X01                          -0.436 *                    -0.217                  
##                                (0.194)                     (0.220)                 
## W.X01BA.CapabilityV             0.109 *                     0.057                  
##                                (0.043)                     (0.050)                 
## W.X10                           0.038                       0.153                  
##                                (0.068)                     (0.216)                 
## BA.CapabilityV                                              0.346 ***              
##                                                            (0.080)                 
## W.X10:BA.CapabilityV                                       -0.028                  
##                                                            (0.049)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                       0.094                  
## Conditional R^2                 0.711                       0.717                  
## AIC                          2991.400                    2984.245                  
## BIC                          3045.140                    3047.756                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.908                       1.682                  
## Var: B.ID W.X10                 0.002                       0.009                  
## Var: B.ID W.X01                 0.058                       0.040                  
## Cov: B.ID (Intercept) W.X10    -0.056                      -0.036                  
## Cov: B.ID (Intercept) W.X01    -0.078                      -0.035                  
## Cov: B.ID W.X10 W.X01           0.002                      -0.018                  
## Var: Residual                   0.752                       0.749                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X10 * BA.CapabilityV  0.32   1 501  .573    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromErrorsV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.799 (- SD)      0.076 (0.096)  0.791  .430     [-0.112, 0.265]
##  4.196 (Mean)      0.038 (0.068)  0.553  .581     [-0.096, 0.171]
##  5.593 (+ SD)     -0.001 (0.096) -0.009  .993     [-0.189, 0.188]
## ─────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.Sb10=PROCESS(data2, y="WA.ThrivingInLearningV", x="W.X10", mods="BA.CapabilityV",covs=c("W.X01","W.X01BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X01, W.X01BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X01 + W.X01BA.CapabilityV + W.X10*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.291 ***                   2.611 ***              
##                                (0.109)                     (0.319)                 
## W.X01                          -0.300                       0.158                  
##                                (0.190)                     (0.221)                 
## W.X01BA.CapabilityV             0.074                      -0.036                  
##                                (0.042)                     (0.050)                 
## W.X10                          -0.026                       0.210                  
##                                (0.061)                     (0.194)                 
## BA.CapabilityV                                              0.400 ***              
##                                                            (0.072)                 
## W.X10:BA.CapabilityV                                       -0.056                  
##                                                            (0.044)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                       0.124                  
## Conditional R^2                 0.713                       0.718                  
## AIC                          2826.465                    2809.814                  
## BIC                          2880.205                    2873.326                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.644                       1.342                  
## Var: B.ID W.X10                 0.001                       0.000                  
## Var: B.ID W.X01                 0.199                       0.179                  
## Cov: B.ID (Intercept) W.X10    -0.037                       0.003                  
## Cov: B.ID (Intercept) W.X01    -0.254                      -0.173                  
## Cov: B.ID W.X10 W.X01           0.014                       0.006                  
## Var: Residual                   0.613                       0.613                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X10 * BA.CapabilityV  1.64   1 647  .200    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.ThrivingInLearningV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.799 (- SD)      0.052 (0.087)  0.603  .547     [-0.118, 0.222]
##  4.196 (Mean)     -0.026 (0.061) -0.430  .667     [-0.147, 0.094]
##  5.593 (+ SD)     -0.105 (0.087) -1.211  .226     [-0.275, 0.065]
## ─────────────────────────────────────────────────────────────────
WP.LearningBehavior.Sb10=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X10", mods="BA.CapabilityV",covs=c("W.X01","W.X01BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X01, W.X01BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X01 + W.X01BA.CapabilityV + W.X10*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────
##                              (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ───────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.549 ***                 1.602 ***            
##                                (0.123)                   (0.355)               
## W.X01                          -0.285                    -0.110                
##                                (0.192)                   (0.221)               
## W.X01BA.CapabilityV             0.072                     0.030                
##                                (0.043)                   (0.050)               
## W.X10                           0.124                    -0.140                
##                                (0.068)                   (0.216)               
## BA.CapabilityV                                            0.464 ***            
##                                                          (0.080)               
## W.X10:BA.CapabilityV                                      0.063                
##                                                          (0.049)               
## ───────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                     0.172                
## Conditional R^2                 0.726                     0.731                
## AIC                          3008.883                  2979.391                
## BIC                          3062.624                  3042.902                
## Num. obs.                     978                       978                    
## Num. groups: B.ID             163                       163                    
## Var: B.ID (Intercept)           2.077                     1.667                
## Var: B.ID W.X10                 0.003                     0.005                
## Var: B.ID W.X01                 0.047                     0.041                
## Cov: B.ID (Intercept) W.X10    -0.010                    -0.070                
## Cov: B.ID (Intercept) W.X01    -0.137                    -0.100                
## Cov: B.ID W.X10 W.X01          -0.010                    -0.005                
## Var: Residual                   0.757                     0.756                
## ───────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X10 * BA.CapabilityV  1.65   1 629  .199    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.LearningBehaviorV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.     t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.799 (- SD)      0.036 (0.097) 0.376  .707     [-0.153, 0.226]
##  4.196 (Mean)      0.124 (0.068) 1.818  .070 .   [-0.010, 0.258]
##  5.593 (+ SD)      0.212 (0.097) 2.194  .029 *   [ 0.023, 0.402]
## ────────────────────────────────────────────────────────────────
WP.SocialLearning.Sb10=PROCESS(data2, y="WP.SocialLearningV", x="W.X10", mods="BA.CapabilityV",covs=c("W.X01","W.X01BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X01, W.X01BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X01 + W.X01BA.CapabilityV + W.X10*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────
##                              (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ───────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.656 ***               1.896 ***          
##                                (0.109)                 (0.314)             
## W.X01                           0.298                   0.190              
##                                (0.191)                 (0.215)             
## W.X01BA.CapabilityV            -0.054                  -0.028              
##                                (0.043)                 (0.049)             
## W.X10                           0.115                  -0.475 *            
##                                (0.069)                 (0.215)             
## BA.CapabilityV                                          0.419 ***          
##                                                        (0.071)             
## W.X10:BA.CapabilityV                                    0.141 **           
##                                                        (0.049)             
## ───────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                   0.177              
## Conditional R^2                 0.691                   0.688              
## AIC                          2964.547                2918.689              
## BIC                          3018.287                2982.201              
## Num. obs.                     978                     978                  
## Num. groups: B.ID             163                     163                  
## Var: B.ID (Intercept)           1.564                   1.232              
## Var: B.ID W.X10                 0.024                   0.011              
## Var: B.ID W.X01                 0.013                   0.008              
## Cov: B.ID (Intercept) W.X10     0.048                  -0.079              
## Cov: B.ID (Intercept) W.X01     0.070                   0.047              
## Cov: B.ID W.X10 W.X01          -0.013                  -0.009              
## Var: Residual                   0.744                   0.741              
## ───────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X10 * BA.CapabilityV  8.34   1 601  .004 ** 
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.799 (- SD)     -0.081 (0.096) -0.846  .398     [-0.270, 0.107]
##  4.196 (Mean)      0.115 (0.068)  1.693  .091 .   [-0.018, 0.248]
##  5.593 (+ SD)      0.311 (0.096)  3.239  .001 **  [ 0.123, 0.500]
## ─────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.Sb10=PROCESS(data2, y="WP.IndependentObservationBasedSocialLearningV", x="W.X10", mods="BA.CapabilityV",covs=c("W.X01","W.X01BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X01, W.X01BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X01 + W.X01BA.CapabilityV + W.X10*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.695 ***                                          1.937 ***                                     
##                                (0.121)                                            (0.357)                                        
## W.X01                           0.119                                             -0.027                                         
##                                (0.220)                                            (0.252)                                        
## W.X01BA.CapabilityV            -0.010                                              0.025                                         
##                                (0.049)                                            (0.057)                                        
## W.X10                           0.172 *                                           -0.639 *                                       
##                                (0.081)                                            (0.253)                                        
## BA.CapabilityV                                                                     0.419 ***                                     
##                                                                                   (0.081)                                        
## W.X10:BA.CapabilityV                                                               0.193 ***                                     
##                                                                                   (0.057)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                                              0.164                                         
## Conditional R^2                 0.652                                              0.655                                         
## AIC                          3259.130                                           3213.541                                         
## BIC                          3312.871                                           3277.053                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           1.878                                              1.554                                         
## Var: B.ID W.X10                 0.034                                              0.012                                         
## Var: B.ID W.X01                 0.001                                              0.000                                         
## Cov: B.ID (Intercept) W.X10     0.042                                             -0.138                                         
## Cov: B.ID (Intercept) W.X01     0.037                                              0.003                                         
## Cov: B.ID W.X10 W.X01          -0.002                                             -0.000                                         
## Var: Residual                   1.039                                              1.030                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────
##                             F df1 df2     p    
## ───────────────────────────────────────────────
## W.X10 * BA.CapabilityV  11.39   1 735 <.001 ***
## ───────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.799 (- SD)     -0.098 (0.113) -0.868  .385     [-0.320, 0.123]
##  4.196 (Mean)      0.172 (0.080)  2.148  .032 *   [ 0.015, 0.329]
##  5.593 (+ SD)      0.442 (0.113)  3.905 <.001 *** [ 0.220, 0.664]
## ─────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.Sb10=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X10", mods="BA.CapabilityV",covs=c("W.X01","W.X01BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X01, W.X01BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X01 + W.X01BA.CapabilityV + W.X10*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.617 ***                                  1.854 ***                             
##                                (0.111)                                    (0.322)                                
## W.X01                           0.390                                      0.407                                 
##                                (0.232)                                    (0.264)                                
## W.X01BA.CapabilityV            -0.077                                     -0.081                                 
##                                (0.052)                                    (0.060)                                
## W.X10                           0.058                                     -0.310                                 
##                                (0.082)                                    (0.256)                                
## BA.CapabilityV                                                             0.420 ***                             
##                                                                           (0.073)                                
## W.X10:BA.CapabilityV                                                       0.088                                 
##                                                                           (0.058)                                
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                                      0.132                                 
## Conditional R^2                 0.614                                      0.606                                 
## AIC                          3262.851                                   3231.618                                 
## BIC                          3316.591                                   3295.130                                 
## Num. obs.                     978                                        978                                     
## Num. groups: B.ID             163                                        163                                     
## Var: B.ID (Intercept)           1.489                                      1.155                                 
## Var: B.ID W.X10                 0.037                                      0.001                                 
## Var: B.ID W.X01                 0.045                                      0.066                                 
## Cov: B.ID (Intercept) W.X10     0.100                                      0.027                                 
## Cov: B.ID (Intercept) W.X01     0.148                                      0.136                                 
## Cov: B.ID W.X10 W.X01          -0.021                                      0.003                                 
## Var: Residual                   1.059                                      1.067                                 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X10 * BA.CapabilityV  2.29   1 633  .131    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.799 (- SD)     -0.064 (0.115) -0.557  .578     [-0.291, 0.162]
##  4.196 (Mean)      0.058 (0.082)  0.714  .476     [-0.102, 0.218]
##  5.593 (+ SD)      0.181 (0.115)  1.567  .118     [-0.045, 0.407]
## ─────────────────────────────────────────────────────────────────

4.2.2 AI VS Self

WA.LearningFromOperationalFailure.Sb01=PROCESS(data2, y="WA.LearningFromOperationalFailureV", x="W.X01", mods="BA.CapabilityV",covs=c("W.X10","W.X10BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X10, W.X10BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X10 + W.X10BA.CapabilityV + W.X01*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.363 ***                               2.652 ***                          
##                                (0.109)                                 (0.315)                             
## W.X10                           0.095                                   0.480 *                            
##                                (0.193)                                 (0.228)                             
## W.X10BA.CapabilityV             0.004                                  -0.087                              
##                                (0.043)                                 (0.052)                             
## W.X01                           0.146 *                                 0.309                              
##                                (0.072)                                 (0.228)                             
## BA.CapabilityV                                                          0.408 ***                          
##                                                                        (0.071)                             
## W.X01:BA.CapabilityV                                                   -0.039                              
##                                                                        (0.051)                             
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                                   0.120                              
## Conditional R^2                 0.620                                   0.622                              
## AIC                          3026.690                                3006.021                              
## BIC                          3080.430                                3069.532                              
## Num. obs.                     978                                     978                                  
## Num. groups: B.ID             163                                     163                                  
## Var: B.ID (Intercept)           1.502                                   1.187                              
## Var: B.ID W.X10                 0.012                                   0.004                              
## Var: B.ID W.X01                 0.003                                   0.001                              
## Cov: B.ID (Intercept) W.X10    -0.134                                  -0.067                              
## Cov: B.ID (Intercept) W.X01    -0.071                                  -0.041                              
## Cov: B.ID W.X10 W.X01           0.006                                   0.002                              
## Var: Residual                   0.842                                   0.841                              
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X01 * BA.CapabilityV  0.57   1 799  .450    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.     t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.799 (- SD)      0.200 (0.102) 1.968  .049 *   [ 0.001, 0.399]
##  4.196 (Mean)      0.146 (0.072) 2.027  .043 *   [ 0.005, 0.287]
##  5.593 (+ SD)      0.091 (0.102) 0.898  .369     [-0.108, 0.291]
## ────────────────────────────────────────────────────────────────
WA.LearningFromErrors.Sb01=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X01", mods="BA.CapabilityV",covs=c("W.X10","W.X10BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X10, W.X10BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X10 + W.X10BA.CapabilityV + W.X01*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.163 ***                   2.710 ***              
##                                (0.118)                     (0.356)                 
## W.X10                           0.068                       0.153                  
##                                (0.190)                     (0.216)                 
## W.X10BA.CapabilityV            -0.007                      -0.028                  
##                                (0.042)                     (0.049)                 
## W.X01                           0.022                      -0.217                  
##                                (0.070)                     (0.220)                 
## BA.CapabilityV                                              0.346 ***              
##                                                            (0.080)                 
## W.X01:BA.CapabilityV                                        0.057                  
##                                                            (0.050)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                       0.094                  
## Conditional R^2                 0.717                       0.717                  
## AIC                          2996.724                    2984.245                  
## BIC                          3050.465                    3047.756                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.904                       1.682                  
## Var: B.ID W.X10                 0.011                       0.009                  
## Var: B.ID W.X01                 0.043                       0.040                  
## Cov: B.ID (Intercept) W.X10    -0.049                      -0.036                  
## Cov: B.ID (Intercept) W.X01     0.006                      -0.035                  
## Cov: B.ID W.X10 W.X01          -0.021                      -0.018                  
## Var: Residual                   0.748                       0.749                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X01 * BA.CapabilityV  1.31   1 273  .253    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromErrorsV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.799 (- SD)     -0.057 (0.098) -0.583  .560     [-0.250, 0.135]
##  4.196 (Mean)      0.022 (0.070)  0.320  .750     [-0.114, 0.159]
##  5.593 (+ SD)      0.102 (0.098)  1.035  .301     [-0.091, 0.295]
## ─────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.Sb01=PROCESS(data2, y="WA.ThrivingInLearningV", x="W.X01", mods="BA.CapabilityV",covs=c("W.X10","W.X10BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X10, W.X10BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X10 + W.X10BA.CapabilityV + W.X01*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.291 ***                   2.611 ***              
##                                (0.109)                     (0.319)                 
## W.X10                           0.018                       0.210                  
##                                (0.174)                     (0.194)                 
## W.X10BA.CapabilityV            -0.010                      -0.056                  
##                                (0.039)                     (0.044)                 
## W.X01                           0.009                       0.158                  
##                                (0.069)                     (0.221)                 
## BA.CapabilityV                                              0.400 ***              
##                                                            (0.072)                 
## W.X01:BA.CapabilityV                                       -0.036                  
##                                                            (0.050)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                       0.124                  
## Conditional R^2                 0.717                       0.718                  
## AIC                          2829.143                    2809.814                  
## BIC                          2882.884                    2873.326                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.644                       1.342                  
## Var: B.ID W.X10                 0.000                       0.000                  
## Var: B.ID W.X01                 0.172                       0.179                  
## Cov: B.ID (Intercept) W.X10    -0.028                       0.003                  
## Cov: B.ID (Intercept) W.X01    -0.195                      -0.173                  
## Cov: B.ID W.X10 W.X01           0.003                       0.006                  
## Var: Residual                   0.613                       0.613                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X01 * BA.CapabilityV  0.51   1 189  .475    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.ThrivingInLearningV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.799 (- SD)      0.058 (0.099)  0.593  .554     [-0.135, 0.252]
##  4.196 (Mean)      0.009 (0.070)  0.123  .902     [-0.128, 0.145]
##  5.593 (+ SD)     -0.041 (0.099) -0.419  .676     [-0.234, 0.152]
## ─────────────────────────────────────────────────────────────────
WP.LearningBehavior.Sb01=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X01", mods="BA.CapabilityV",covs=c("W.X10","W.X10BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X10, W.X10BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X10 + W.X10BA.CapabilityV + W.X01*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────
##                              (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ───────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.549 ***                 1.602 ***            
##                                (0.123)                   (0.355)               
## W.X10                          -0.337                    -0.140                
##                                (0.188)                   (0.216)               
## W.X10BA.CapabilityV             0.110 **                  0.063                
##                                (0.042)                   (0.049)               
## W.X01                           0.017                    -0.110                
##                                (0.070)                   (0.221)               
## BA.CapabilityV                                            0.464 ***            
##                                                          (0.080)               
## W.X01:BA.CapabilityV                                      0.030                
##                                                          (0.050)               
## ───────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.004                     0.172                
## Conditional R^2                 0.724                     0.731                
## AIC                          3005.723                  2979.391                
## BIC                          3059.463                  3042.902                
## Num. obs.                     978                       978                    
## Num. groups: B.ID             163                       163                    
## Var: B.ID (Intercept)           2.078                     1.667                
## Var: B.ID W.X10                 0.009                     0.005                
## Var: B.ID W.X01                 0.041                     0.041                
## Cov: B.ID (Intercept) W.X10    -0.111                    -0.070                
## Cov: B.ID (Intercept) W.X01    -0.072                    -0.100                
## Cov: B.ID W.X10 W.X01          -0.007                    -0.005                
## Var: Residual                   0.756                     0.756                
## ───────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X01 * BA.CapabilityV  0.37   1 303  .546    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.LearningBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.799 (- SD)     -0.025 (0.099) -0.257  .797     [-0.219, 0.168]
##  4.196 (Mean)      0.017 (0.070)  0.241  .809     [-0.120, 0.154]
##  5.593 (+ SD)      0.059 (0.099)  0.599  .550     [-0.135, 0.253]
## ─────────────────────────────────────────────────────────────────
WP.SocialLearning.Sb01=PROCESS(data2, y="WP.SocialLearningV", x="W.X01", mods="BA.CapabilityV",covs=c("W.X10","W.X10BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X10, W.X10BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X10 + W.X10BA.CapabilityV + W.X01*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────
##                              (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ───────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.656 ***               1.896 ***          
##                                (0.109)                 (0.314)             
## W.X10                          -0.872 ***              -0.475 *            
##                                (0.183)                 (0.215)             
## W.X10BA.CapabilityV             0.235 ***               0.141 **           
##                                (0.040)                 (0.049)             
## W.X01                           0.073                   0.190              
##                                (0.068)                 (0.215)             
## BA.CapabilityV                                          0.419 ***          
##                                                        (0.071)             
## W.X01:BA.CapabilityV                                   -0.028              
##                                                        (0.049)             
## ───────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.017                   0.177              
## Conditional R^2                 0.673                   0.688              
## AIC                          2939.950                2918.689              
## BIC                          2993.691                2982.201              
## Num. obs.                     978                     978                  
## Num. groups: B.ID             163                     163                  
## Var: B.ID (Intercept)           1.565                   1.232              
## Var: B.ID W.X10                 0.021                   0.011              
## Var: B.ID W.X01                 0.006                   0.008              
## Cov: B.ID (Intercept) W.X10    -0.151                  -0.079              
## Cov: B.ID (Intercept) W.X01     0.027                   0.047              
## Cov: B.ID W.X10 W.X01          -0.009                  -0.009              
## Var: Residual                   0.742                   0.741              
## ───────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X01 * BA.CapabilityV  0.33   1 632  .565    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.     t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.799 (- SD)      0.112 (0.096) 1.167  .244     [-0.076, 0.300]
##  4.196 (Mean)      0.073 (0.068) 1.075  .283     [-0.060, 0.206]
##  5.593 (+ SD)      0.034 (0.096) 0.353  .724     [-0.154, 0.222]
## ────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.Sb01=PROCESS(data2, y="WP.IndependentObservationBasedSocialLearningV", x="W.X01", mods="BA.CapabilityV",covs=c("W.X10","W.X10BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X10, W.X10BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X10 + W.X10BA.CapabilityV + W.X01*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.695 ***                                          1.937 ***                                     
##                                (0.121)                                            (0.357)                                        
## W.X10                          -0.981 ***                                         -0.639 *                                       
##                                (0.212)                                            (0.253)                                        
## W.X10BA.CapabilityV             0.275 ***                                          0.193 ***                                     
##                                (0.047)                                            (0.057)                                        
## W.X01                           0.078                                             -0.027                                         
##                                (0.080)                                            (0.252)                                        
## BA.CapabilityV                                                                     0.419 ***                                     
##                                                                                   (0.081)                                        
## W.X01:BA.CapabilityV                                                               0.025                                         
##                                                                                   (0.057)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.019                                              0.164                                         
## Conditional R^2                 0.640                                              0.655                                         
## AIC                          3232.354                                           3213.541                                         
## BIC                          3286.095                                           3277.053                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           1.887                                              1.554                                         
## Var: B.ID W.X10                 0.022                                              0.012                                         
## Var: B.ID W.X01                 0.000                                              0.000                                         
## Cov: B.ID (Intercept) W.X10    -0.202                                             -0.138                                         
## Cov: B.ID (Intercept) W.X01     0.023                                              0.003                                         
## Cov: B.ID W.X10 W.X01          -0.002                                             -0.000                                         
## Var: Residual                   1.031                                              1.030                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X01 * BA.CapabilityV  0.20   1 811  .659    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.     t     p            [95% CI]
## ────────────────────────────────────────────────────────────────
##  2.799 (- SD)      0.043 (0.112) 0.383  .702     [-0.177, 0.264]
##  4.196 (Mean)      0.078 (0.080) 0.984  .326     [-0.078, 0.234]
##  5.593 (+ SD)      0.113 (0.112) 1.008  .314     [-0.107, 0.334]
## ────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.Sb01=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X01", mods="BA.CapabilityV",covs=c("W.X10","W.X10BA.CapabilityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.CapabilityV
## - Covariates (C) : W.X10, W.X10BA.CapabilityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X10 + W.X10BA.CapabilityV + W.X01*BA.CapabilityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.617 ***                                  1.854 ***                             
##                                (0.111)                                    (0.322)                                
## W.X10                          -0.813 ***                                 -0.310                                 
##                                (0.223)                                    (0.256)                                
## W.X10BA.CapabilityV             0.208 ***                                  0.088                                 
##                                (0.049)                                    (0.058)                                
## W.X01                           0.067                                      0.407                                 
##                                (0.082)                                    (0.264)                                
## BA.CapabilityV                                                             0.420 ***                             
##                                                                           (0.073)                                
## W.X01:BA.CapabilityV                                                      -0.081                                 
##                                                                           (0.060)                                
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.011                                      0.132                                 
## Conditional R^2                 0.594                                      0.606                                 
## AIC                          3250.589                                   3231.618                                 
## BIC                          3304.330                                   3295.130                                 
## Num. obs.                     978                                        978                                     
## Num. groups: B.ID             163                                        163                                     
## Var: B.ID (Intercept)           1.481                                      1.155                                 
## Var: B.ID W.X10                 0.039                                      0.001                                 
## Var: B.ID W.X01                 0.037                                      0.066                                 
## Cov: B.ID (Intercept) W.X10    -0.061                                      0.027                                 
## Cov: B.ID (Intercept) W.X01     0.094                                      0.136                                 
## Cov: B.ID W.X10 W.X01          -0.015                                      0.003                                 
## Var: Residual                   1.064                                      1.067                                 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────
##                            F df1 df2     p    
## ──────────────────────────────────────────────
## W.X01 * BA.CapabilityV  1.84   1 261  .176    
## ──────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────────
##  "BA.CapabilityV" Effect    S.E.      t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────
##  2.799 (- SD)      0.181 (0.116)  1.552  .122     [-0.047, 0.409]
##  4.196 (Mean)      0.067 (0.082)  0.820  .413     [-0.094, 0.229]
##  5.593 (+ SD)     -0.046 (0.116) -0.393  .695     [-0.274, 0.182]
## ─────────────────────────────────────────────────────────────────

5 BA.AIInteractionQualityV

5.1 Study 1

WA.LearningFromOperationalFailure.S1=PROCESS(data1, y="WA.LearningFromOperationalFailureV", x="W.X", mods="BA.AIInteractionQualityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X*BA.AIInteractionQualityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                               (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      4.779 ***                               3.826 ***                          
##                                 (0.085)                                 (0.247)                             
## W.X                              0.139                                   0.039                              
##                                 (0.073)                                 (0.222)                             
## BA.AIInteractionQualityV                                                 0.239 ***                          
##                                                                         (0.059)                             
## W.X:BA.AIInteractionQualityV                                             0.025                              
##                                                                         (0.052)                             
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.003                                   0.078                              
## Conditional R^2                  0.458                                   0.460                              
## AIC                           2057.038                                2046.203                              
## BIC                           2084.028                                2082.189                              
## Num. obs.                      664                                     664                                  
## Num. groups: B.ID              166                                     166                                  
## Var: B.ID (Intercept)            0.758                                   0.653                              
## Var: B.ID W.X                    0.001                                   0.002                              
## Cov: B.ID (Intercept) W.X       -0.023                                  -0.035                              
## Var: Residual                    0.875                                   0.876                              
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.AIInteractionQualityV  0.23   1 491  .632    
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  2.600 (- SD)                0.104 (0.103) 1.015  .310     [-0.097, 0.306]
##  3.986 (Mean)                0.139 (0.073) 1.916  .056 .   [-0.003, 0.282]
##  5.372 (+ SD)                0.174 (0.103) 1.693  .091 .   [-0.028, 0.376]
## ──────────────────────────────────────────────────────────────────────────
WA.LearningFromErrors.S1=PROCESS(data1, y="WA.LearningFromErrorsV", x="W.X", mods="BA.AIInteractionQualityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)##
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X*BA.AIInteractionQualityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                               (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      4.291 ***                   2.688 ***              
##                                 (0.104)                     (0.290)                 
## W.X                              0.031                       0.410                  
##                                 (0.075)                     (0.226)                 
## BA.AIInteractionQualityV                                     0.402 ***              
##                                                             (0.069)                 
## W.X:BA.AIInteractionQualityV                                -0.095                  
##                                                             (0.054)                 
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.000                       0.114                  
## Conditional R^2                  0.612                       0.613                  
## AIC                           2122.701                    2102.870                  
## BIC                           2149.690                    2138.856                  
## Num. obs.                      664                         664                      
## Num. groups: B.ID              166                         166                      
## Var: B.ID (Intercept)            1.395                       1.092                  
## Var: B.ID W.X                    0.094                       0.082                  
## Cov: B.ID (Intercept) W.X       -0.131                      -0.060                  
## Var: Residual                    0.832                       0.832                  
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.AIInteractionQualityV  3.16   1 164  .077 .  
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromErrorsV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.600 (- SD)                0.163 (0.105)  1.552  .123     [-0.043, 0.369]
##  3.986 (Mean)                0.031 (0.074)  0.416  .678     [-0.115, 0.176]
##  5.372 (+ SD)               -0.101 (0.105) -0.963  .337     [-0.307, 0.105]
## ───────────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.S1=PROCESS(data1, y="WA.ThrivingInLearningV", x="W.X", mods="BA.AIInteractionQualityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)##
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X*BA.AIInteractionQualityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                               (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      4.702 ***                   3.575 ***              
##                                 (0.093)                     (0.269)                 
## W.X                             -0.058                       0.327                  
##                                 (0.062)                     (0.188)                 
## BA.AIInteractionQualityV                                     0.283 ***              
##                                                             (0.064)                 
## W.X:BA.AIInteractionQualityV                                -0.096 *                
##                                                             (0.045)                 
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.001                       0.068                  
## Conditional R^2                  0.616                       0.618                  
## AIC                           1920.298                    1913.872                  
## BIC                           1947.288                    1949.858                  
## Num. obs.                      664                         664                      
## Num. groups: B.ID              166                         166                      
## Var: B.ID (Intercept)            1.132                       0.987                  
## Var: B.ID W.X                    0.018                       0.009                  
## Cov: B.ID (Intercept) W.X       -0.142                      -0.094                  
## Var: Residual                    0.624                       0.622                  
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.AIInteractionQualityV  4.70   1 465  .031 *  
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.ThrivingInLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  2.600 (- SD)                0.076 (0.087)  0.870  .385     [-0.095,  0.247]
##  3.986 (Mean)               -0.058 (0.062) -0.938  .349     [-0.179,  0.063]
##  5.372 (+ SD)               -0.192 (0.087) -2.196  .029 *   [-0.363, -0.021]
## ────────────────────────────────────────────────────────────────────────────
WP.LearningBehavior.S1=PROCESS(data1, y="WP.LearningBehaviorV", x="W.X", mods="BA.AIInteractionQualityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X*BA.AIInteractionQualityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────
##                               (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      3.648 ***                 2.126 ***            
##                                 (0.111)                   (0.316)               
## W.X                             -0.056                     0.288                
##                                 (0.093)                   (0.283)               
## BA.AIInteractionQualityV                                   0.382 ***            
##                                                           (0.075)               
## W.X:BA.AIInteractionQualityV                              -0.086                
##                                                           (0.067)               
## ────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.000                     0.084                
## Conditional R^2                  0.466                     0.468                
## AIC                           2385.192                  2370.655                
## BIC                           2412.181                  2406.641                
## Num. obs.                      664                       664                    
## Num. groups: B.ID              166                       166                    
## Var: B.ID (Intercept)            1.343                     1.075                
## Var: B.ID W.X                    0.008                     0.002                
## Cov: B.ID (Intercept) W.X       -0.103                    -0.046                
## Var: Residual                    1.426                     1.427                
## ────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.AIInteractionQualityV  1.66   1 493  .198    
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.LearningBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.600 (- SD)                0.064 (0.131)  0.487  .626     [-0.193, 0.321]
##  3.986 (Mean)               -0.056 (0.093) -0.601  .548     [-0.238, 0.126]
##  5.372 (+ SD)               -0.175 (0.131) -1.337  .182     [-0.433, 0.082]
## ───────────────────────────────────────────────────────────────────────────
WP.SocialLearning.S1=PROCESS(data1, y="WP.SocialLearningV", x="W.X", mods="BA.AIInteractionQualityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X*BA.AIInteractionQualityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────
##                               (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ────────────────────────────────────────────────────────────────────────────
## (Intercept)                      3.759 ***               2.024 ***          
##                                 (0.104)                 (0.284)             
## W.X                             -0.178 *                 0.110              
##                                 (0.079)                 (0.241)             
## BA.AIInteractionQualityV                                 0.435 ***          
##                                                         (0.067)             
## W.X:BA.AIInteractionQualityV                            -0.072              
##                                                         (0.057)             
## ────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.004                   0.141              
## Conditional R^2                  0.535                   0.536              
## AIC                           2211.535                2182.954              
## BIC                           2238.525                2218.940              
## Num. obs.                      664                     664                  
## Num. groups: B.ID              166                     166                  
## Var: B.ID (Intercept)            1.282                   0.927              
## Var: B.ID W.X                    0.007                   0.002              
## Cov: B.ID (Intercept) W.X       -0.097                  -0.041              
## Var: Residual                    1.040                   1.040              
## ────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.AIInteractionQualityV  1.60   1 492  .206    
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  2.600 (- SD)               -0.078 (0.112) -0.697  .486     [-0.298,  0.142]
##  3.986 (Mean)               -0.178 (0.079) -2.252  .025 *   [-0.334, -0.023]
##  5.372 (+ SD)               -0.279 (0.112) -2.487  .013 *   [-0.498, -0.059]
## ────────────────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.S1=PROCESS(data1, y="WP.IndependentObservationBasedSocialLearningV", x="W.X", mods="BA.AIInteractionQualityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X*BA.AIInteractionQualityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                               (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      3.736 ***                                          2.260 ***                                     
##                                 (0.114)                                            (0.327)                                        
## W.X                             -0.170                                             -0.112                                         
##                                 (0.094)                                            (0.288)                                        
## BA.AIInteractionQualityV                                                            0.370 ***                                     
##                                                                                    (0.078)                                        
## W.X:BA.AIInteractionQualityV                                                       -0.014                                         
##                                                                                    (0.068)                                        
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.003                                              0.092                                         
## Conditional R^2                  0.478                                              0.479                                         
## AIC                           2410.168                                           2394.545                                         
## BIC                           2437.158                                           2430.532                                         
## Num. obs.                      664                                                664                                             
## Num. groups: B.ID              166                                                166                                             
## Var: B.ID (Intercept)            1.438                                              1.182                                         
## Var: B.ID W.X                    0.007                                              0.007                                         
## Cov: B.ID (Intercept) W.X       -0.104                                             -0.093                                         
## Var: Residual                    1.469                                              1.472                                         
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.AIInteractionQualityV  0.05   1 484  .832    
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.600 (- SD)               -0.150 (0.134) -1.124  .262     [-0.412, 0.112]
##  3.986 (Mean)               -0.170 (0.094) -1.803  .072 .   [-0.355, 0.015]
##  5.372 (+ SD)               -0.190 (0.134) -1.425  .155     [-0.452, 0.071]
## ───────────────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.S1=PROCESS(data1, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X", mods="BA.AIInteractionQualityV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)##
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X*BA.AIInteractionQualityV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                               (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      3.782 ***                                  1.788 ***                             
##                                 (0.112)                                    (0.302)                                
## W.X                             -0.187 *                                    0.332                                 
##                                 (0.091)                                    (0.276)                                
## BA.AIInteractionQualityV                                                    0.500 ***                             
##                                                                            (0.072)                                
## W.X:BA.AIInteractionQualityV                                               -0.130 *                               
##                                                                            (0.065)                                
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.003                                      0.144                                 
## Conditional R^2                  0.483                                      0.486                                 
## AIC                           2364.000                                   2330.273                                 
## BIC                           2390.990                                   2366.259                                 
## Num. obs.                      664                                        664                                     
## Num. groups: B.ID              166                                        166                                     
## Var: B.ID (Intercept)            1.418                                      0.953                                 
## Var: B.ID W.X                    0.018                                      0.002                                 
## Cov: B.ID (Intercept) W.X       -0.159                                     -0.048                                 
## Var: Residual                    1.365                                      1.362                                 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────────────
##                                    F df1 df2     p    
## ──────────────────────────────────────────────────────
## W.X * BA.AIInteractionQualityV  3.96   1 492  .047 *  
## ──────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p             [95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  2.600 (- SD)               -0.006 (0.128) -0.048  .962     [-0.258,  0.245]
##  3.986 (Mean)               -0.187 (0.091) -2.060  .040 *   [-0.364, -0.009]
##  5.372 (+ SD)               -0.367 (0.128) -2.864  .004 **  [-0.619, -0.116]
## ────────────────────────────────────────────────────────────────────────────

5.2 Study 2

5.2.1 AI VS Control

WA.LearningFromOperationalFailure.Sb10=PROCESS(data2, y="WA.LearningFromOperationalFailureV", x="W.X10", mods="BA.AIInteractionQualityV",covs=c("W.X01","W.X01BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X01, W.X01BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X01 + W.X01BA.AIInteractionQualityV + W.X10*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        4.363 ***                               3.019 ***                          
##                                   (0.109)                                 (0.319)                             
## W.X01                             -0.284                                   0.043                              
##                                   (0.190)                                 (0.223)                             
## W.X01BA.AIInteractionQualityV      0.107 *                                 0.026                              
##                                   (0.044)                                 (0.053)                             
## W.X10                              0.113                                   0.343                              
##                                   (0.072)                                 (0.224)                             
## BA.AIInteractionQualityV                                                   0.336 ***                          
##                                                                           (0.075)                             
## W.X10:BA.AIInteractionQualityV                                            -0.058                              
##                                                                           (0.053)                             
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.005                                   0.091                              
## Conditional R^2                    0.615                                   0.622                              
## AIC                             3021.388                                3013.371                              
## BIC                             3075.129                                3076.883                              
## Num. obs.                        978                                     978                                  
## Num. groups: B.ID                163                                     163                                  
## Var: B.ID (Intercept)              1.501                                   1.301                              
## Var: B.ID W.X10                    0.011                                   0.007                              
## Var: B.ID W.X01                    0.012                                   0.006                              
## Cov: B.ID (Intercept) W.X10       -0.131                                  -0.097                              
## Cov: B.ID (Intercept) W.X01       -0.134                                  -0.088                              
## Cov: B.ID W.X10 W.X01              0.012                                   0.007                              
## Var: Residual                      0.840                                   0.840                              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.AIInteractionQualityV  1.19   1 755  .276    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)                0.191 (0.102) 1.876  .061 .   [-0.009, 0.391]
##  4.006 (Mean)                0.113 (0.072) 1.563  .118     [-0.029, 0.254]
##  5.372 (+ SD)                0.034 (0.102) 0.334  .738     [-0.166, 0.234]
## ──────────────────────────────────────────────────────────────────────────
WA.LearningFromErrors.Sb10=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X10", mods="BA.AIInteractionQualityV",covs=c("W.X01","W.X01BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X01, W.X01BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X01 + W.X01BA.AIInteractionQualityV + W.X10*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        4.163 ***                   3.006 ***              
##                                   (0.118)                     (0.355)                 
## W.X01                             -0.606 **                   -0.425 *                
##                                   (0.188)                     (0.214)                 
## W.X01BA.AIInteractionQualityV      0.157 ***                   0.112 *                
##                                   (0.044)                     (0.051)                 
## W.X10                              0.038                       0.132                  
##                                   (0.068)                     (0.211)                 
## BA.AIInteractionQualityV                                       0.289 ***              
##                                                               (0.084)                 
## W.X10:BA.AIInteractionQualityV                                -0.024                  
##                                                               (0.050)                 
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.006                       0.074                  
## Conditional R^2                    0.712                       0.718                  
## AIC                             2985.004                    2984.423                  
## BIC                             3038.744                    3047.935                  
## Num. obs.                        978                         978                      
## Num. groups: B.ID                163                         163                      
## Var: B.ID (Intercept)              1.906                       1.762                  
## Var: B.ID W.X10                    0.009                       0.009                  
## Var: B.ID W.X01                    0.031                       0.028                  
## Cov: B.ID (Intercept) W.X10       -0.055                      -0.043                  
## Cov: B.ID (Intercept) W.X01       -0.081                      -0.059                  
## Cov: B.ID W.X10 W.X01             -0.012                      -0.013                  
## Var: Residual                      0.748                       0.748                  
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.AIInteractionQualityV  0.22   1 495  .638    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromErrorsV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)                0.070 (0.096) 0.723  .470     [-0.119, 0.259]
##  4.006 (Mean)                0.038 (0.068) 0.551  .582     [-0.096, 0.171]
##  5.372 (+ SD)                0.005 (0.096) 0.056  .955     [-0.184, 0.194]
## ──────────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.Sb10=PROCESS(data2, y="WA.ThrivingInLearningV", x="W.X10", mods="BA.AIInteractionQualityV",covs=c("W.X01","W.X01BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X01, W.X01BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X01 + W.X01BA.AIInteractionQualityV + W.X10*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        4.291 ***                   2.791 ***              
##                                   (0.109)                     (0.317)                 
## W.X01                             -0.363                       0.023                  
##                                   (0.185)                     (0.216)                 
## W.X01BA.AIInteractionQualityV      0.093 *                    -0.004                  
##                                   (0.043)                     (0.051)                 
## W.X10                             -0.026                       0.110                  
##                                   (0.061)                     (0.190)                 
## BA.AIInteractionQualityV                                       0.374 ***              
##                                                               (0.075)                 
## W.X10:BA.AIInteractionQualityV                                -0.034                  
##                                                               (0.045)                 
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.003                       0.113                  
## Conditional R^2                    0.712                       0.717                  
## AIC                             2824.991                    2812.686                  
## BIC                             2878.732                    2876.198                  
## Num. obs.                        978                         978                      
## Num. groups: B.ID                163                         163                      
## Var: B.ID (Intercept)              1.644                       1.392                  
## Var: B.ID W.X10                    0.001                       0.000                  
## Var: B.ID W.X01                    0.189                       0.180                  
## Cov: B.ID (Intercept) W.X10       -0.036                      -0.015                  
## Cov: B.ID (Intercept) W.X01       -0.257                      -0.197                  
## Cov: B.ID W.X10 W.X01              0.006                       0.008                  
## Var: Residual                      0.613                       0.614                  
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.AIInteractionQualityV  0.58   1 646  .448    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.ThrivingInLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)                0.020 (0.087)  0.233  .816     [-0.150, 0.190]
##  4.006 (Mean)               -0.026 (0.061) -0.430  .667     [-0.147, 0.094]
##  5.372 (+ SD)               -0.073 (0.087) -0.841  .401     [-0.243, 0.097]
## ───────────────────────────────────────────────────────────────────────────
WP.LearningBehavior.Sb10=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X10", mods="BA.AIInteractionQualityV",covs=c("W.X01","W.X01BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X01, W.X01BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X01 + W.X01BA.AIInteractionQualityV + W.X10*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ──────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.549 ***                 1.676 ***            
##                                   (0.123)                   (0.348)               
## W.X01                             -0.320                    -0.075                
##                                   (0.188)                   (0.217)               
## W.X01BA.AIInteractionQualityV      0.084                     0.023                
##                                   (0.043)                   (0.051)               
## W.X10                              0.124                     0.050                
##                                   (0.068)                   (0.212)               
## BA.AIInteractionQualityV                                     0.467 ***            
##                                                             (0.082)               
## W.X10:BA.AIInteractionQualityV                               0.018                
##                                                             (0.050)               
## ──────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.003                     0.155                
## Conditional R^2                    0.725                     0.730                
## AIC                             3008.031                  2985.372                
## BIC                             3061.772                  3048.884                
## Num. obs.                        978                       978                    
## Num. groups: B.ID                163                       163                    
## Var: B.ID (Intercept)              2.076                     1.677                
## Var: B.ID W.X10                    0.002                     0.002                
## Var: B.ID W.X01                    0.045                     0.037                
## Cov: B.ID (Intercept) W.X10       -0.008                    -0.024                
## Cov: B.ID (Intercept) W.X01       -0.143                    -0.090                
## Cov: B.ID W.X10 W.X01             -0.009                    -0.007                
## Var: Residual                      0.757                     0.758                
## ──────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.AIInteractionQualityV  0.14   1 643  .712    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.LearningBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)                0.099 (0.097) 1.024  .306     [-0.090, 0.288]
##  4.006 (Mean)                0.124 (0.068) 1.818  .069 .   [-0.010, 0.258]
##  5.372 (+ SD)                0.149 (0.097) 1.547  .122     [-0.040, 0.339]
## ──────────────────────────────────────────────────────────────────────────
WP.SocialLearning.Sb10=PROCESS(data2, y="WP.SocialLearningV", x="W.X10", mods="BA.AIInteractionQualityV",covs=c("W.X01","W.X01BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X01, W.X01BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X01 + W.X01BA.AIInteractionQualityV + W.X10*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ──────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.656 ***               1.986 ***          
##                                   (0.109)                 (0.309)             
## W.X01                              0.137                   0.065              
##                                   (0.188)                 (0.211)             
## W.X01BA.AIInteractionQualityV     -0.016                   0.002              
##                                   (0.044)                 (0.050)             
## W.X10                              0.115                  -0.477 *            
##                                   (0.069)                 (0.211)             
## BA.AIInteractionQualityV                                   0.417 ***          
##                                                           (0.073)             
## W.X10:BA.AIInteractionQualityV                             0.148 **           
##                                                           (0.050)             
## ──────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.001                   0.175              
## Conditional R^2                    0.688                   0.689              
## AIC                             2965.530                2921.419              
## BIC                             3019.270                2984.931              
## Num. obs.                        978                     978                  
## Num. groups: B.ID                163                     163                  
## Var: B.ID (Intercept)              1.566                   1.253              
## Var: B.ID W.X10                    0.030                   0.017              
## Var: B.ID W.X01                    0.015                   0.012              
## Cov: B.ID (Intercept) W.X10        0.045                  -0.083              
## Cov: B.ID (Intercept) W.X01        0.037                   0.020              
## Cov: B.ID W.X10 W.X01             -0.019                  -0.013              
## Var: Residual                      0.742                   0.740              
## ──────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.AIInteractionQualityV  8.78   1 539  .003 ** 
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)               -0.087 (0.096) -0.902  .368     [-0.276, 0.102]
##  4.006 (Mean)                0.115 (0.068)  1.688  .092 .   [-0.018, 0.249]
##  5.372 (+ SD)                0.317 (0.096)  3.289  .001 **  [ 0.128, 0.506]
## ───────────────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.Sb10=PROCESS(data2, y="WP.IndependentObservationBasedSocialLearningV", x="W.X10", mods="BA.AIInteractionQualityV",covs=c("W.X01","W.X01BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X01, W.X01BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X01 + W.X01BA.AIInteractionQualityV + W.X10*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.695 ***                                          2.096 ***                                     
##                                   (0.121)                                            (0.353)                                        
## W.X01                              0.144                                              0.054                                         
##                                   (0.216)                                            (0.247)                                        
## W.X01BA.AIInteractionQualityV     -0.016                                              0.006                                         
##                                   (0.050)                                            (0.058)                                        
## W.X10                              0.172 *                                           -0.454                                         
##                                   (0.081)                                            (0.248)                                        
## BA.AIInteractionQualityV                                                              0.399 ***                                     
##                                                                                      (0.083)                                        
## W.X10:BA.AIInteractionQualityV                                                        0.156 **                                      
##                                                                                      (0.059)                                        
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.002                                              0.133                                         
## Conditional R^2                    0.652                                              0.653                                         
## AIC                             3259.030                                           3227.634                                         
## BIC                             3312.771                                           3291.146                                         
## Num. obs.                        978                                                978                                             
## Num. groups: B.ID                163                                                163                                             
## Var: B.ID (Intercept)              1.878                                              1.593                                         
## Var: B.ID W.X10                    0.034                                              0.004                                         
## Var: B.ID W.X01                    0.001                                              0.000                                         
## Cov: B.ID (Intercept) W.X10        0.043                                             -0.082                                         
## Cov: B.ID (Intercept) W.X01        0.042                                              0.022                                         
## Cov: B.ID W.X10 W.X01             -0.001                                             -0.001                                         
## Var: Residual                      1.039                                              1.038                                         
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.AIInteractionQualityV  7.12   1 783  .008 ** 
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)               -0.042 (0.113) -0.368  .713     [-0.263, 0.180]
##  4.006 (Mean)                0.172 (0.080)  2.148  .032 *   [ 0.015, 0.328]
##  5.372 (+ SD)                0.385 (0.113)  3.406 <.001 *** [ 0.164, 0.607]
## ───────────────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.Sb10=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X10", mods="BA.AIInteractionQualityV",covs=c("W.X01","W.X01BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X01, W.X01BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X01 + W.X01BA.AIInteractionQualityV + W.X10*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.617 ***                                  1.877 ***                             
##                                   (0.111)                                    (0.315)                                
## W.X01                              0.062                                      0.076                                 
##                                   (0.229)                                    (0.260)                                
## W.X01BA.AIInteractionQualityV      0.001                                     -0.002                                 
##                                   (0.053)                                    (0.061)                                
## W.X10                              0.058                                     -0.500 *                               
##                                   (0.082)                                    (0.250)                                
## BA.AIInteractionQualityV                                                      0.434 ***                             
##                                                                              (0.074)                                
## W.X10:BA.AIInteractionQualityV                                                0.139 *                               
##                                                                              (0.059)                                
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.000                                      0.162                                 
## Conditional R^2                    0.608                                      0.608                                 
## AIC                             3264.496                                   3223.892                                 
## BIC                             3318.236                                   3287.404                                 
## Num. obs.                        978                                        978                                     
## Num. groups: B.ID                163                                        163                                     
## Var: B.ID (Intercept)              1.489                                      1.153                                 
## Var: B.ID W.X10                    0.038                                      0.000                                 
## Var: B.ID W.X01                    0.057                                      0.085                                 
## Cov: B.ID (Intercept) W.X10        0.100                                     -0.024                                 
## Cov: B.ID (Intercept) W.X01        0.084                                      0.066                                 
## Cov: B.ID W.X10 W.X01             -0.035                                     -0.001                                 
## Var: Residual                      1.060                                      1.062                                 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X10 * BA.AIInteractionQualityV  5.56   1 647  .019 *  
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)               -0.132 (0.115) -1.152  .250     [-0.357, 0.093]
##  4.006 (Mean)                0.058 (0.081)  0.719  .473     [-0.101, 0.217]
##  5.372 (+ SD)                0.249 (0.115)  2.169  .031 *   [ 0.024, 0.474]
## ───────────────────────────────────────────────────────────────────────────

5.2.2 AI VS Self

WA.LearningFromOperationalFailure.Sb01=PROCESS(data2, y="WA.LearningFromOperationalFailureV", x="W.X01", mods="BA.AIInteractionQualityV",covs=c("W.X10","W.X10BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X10, W.X10BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X10 + W.X10BA.AIInteractionQualityV + W.X01*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        4.363 ***                               3.019 ***                          
##                                   (0.109)                                 (0.319)                             
## W.X10                              0.138                                   0.343                              
##                                   (0.190)                                 (0.224)                             
## W.X10BA.AIInteractionQualityV     -0.006                                  -0.058                              
##                                   (0.044)                                 (0.053)                             
## W.X01                              0.146 *                                 0.043                              
##                                   (0.072)                                 (0.223)                             
## BA.AIInteractionQualityV                                                   0.336 ***                          
##                                                                           (0.075)                             
## W.X01:BA.AIInteractionQualityV                                             0.026                              
##                                                                           (0.053)                             
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.002                                   0.091                              
## Conditional R^2                    0.621                                   0.622                              
## AIC                             3026.634                                3013.371                              
## BIC                             3080.375                                3076.883                              
## Num. obs.                        978                                     978                                  
## Num. groups: B.ID                163                                     163                                  
## Var: B.ID (Intercept)              1.502                                   1.301                              
## Var: B.ID W.X10                    0.011                                   0.007                              
## Var: B.ID W.X01                    0.003                                   0.006                              
## Cov: B.ID (Intercept) W.X10       -0.127                                  -0.097                              
## Cov: B.ID (Intercept) W.X01       -0.070                                  -0.088                              
## Cov: B.ID W.X10 W.X01              0.006                                   0.007                              
## Var: Residual                      0.841                                   0.840                              
## ──────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.AIInteractionQualityV  0.24   1 763  .626    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)                0.111 (0.102) 1.085  .278     [-0.089, 0.310]
##  4.006 (Mean)                0.146 (0.072) 2.022  .044 *   [ 0.004, 0.287]
##  5.372 (+ SD)                0.181 (0.102) 1.774  .076 .   [-0.019, 0.381]
## ──────────────────────────────────────────────────────────────────────────
WA.LearningFromErrors.Sb01=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X01", mods="BA.AIInteractionQualityV",covs=c("W.X10","W.X10BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X10, W.X10BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X10 + W.X10BA.AIInteractionQualityV + W.X01*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        4.163 ***                   3.006 ***              
##                                   (0.118)                     (0.355)                 
## W.X10                              0.178                       0.132                  
##                                   (0.186)                     (0.211)                 
## W.X10BA.AIInteractionQualityV     -0.035                      -0.024                  
##                                   (0.043)                     (0.050)                 
## W.X01                              0.022                      -0.425 *                
##                                   (0.070)                     (0.214)                 
## BA.AIInteractionQualityV                                       0.289 ***              
##                                                               (0.084)                 
## W.X01:BA.AIInteractionQualityV                                 0.112 *                
##                                                               (0.051)                 
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.000                       0.074                  
## Conditional R^2                    0.718                       0.718                  
## AIC                             2996.129                    2984.423                  
## BIC                             3049.870                    3047.935                  
## Num. obs.                        978                         978                      
## Num. groups: B.ID                163                         163                      
## Var: B.ID (Intercept)              1.904                       1.762                  
## Var: B.ID W.X10                    0.008                       0.009                  
## Var: B.ID W.X01                    0.040                       0.028                  
## Cov: B.ID (Intercept) W.X10       -0.033                      -0.043                  
## Cov: B.ID (Intercept) W.X01        0.008                      -0.059                  
## Cov: B.ID W.X10 W.X01             -0.017                      -0.013                  
## Var: Residual                      0.749                       0.748                  
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.AIInteractionQualityV  4.88   1 316  .028 *  
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromErrorsV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)               -0.130 (0.098) -1.334  .183     [-0.322, 0.061]
##  4.006 (Mean)                0.022 (0.069)  0.322  .747     [-0.113, 0.157]
##  5.372 (+ SD)                0.175 (0.098)  1.790  .074 .   [-0.017, 0.366]
## ───────────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.Sb01=PROCESS(data2, y="WA.ThrivingInLearningV", x="W.X01", mods="BA.AIInteractionQualityV",covs=c("W.X10","W.X10BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X10, W.X10BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X10 + W.X10BA.AIInteractionQualityV + W.X01*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        4.291 ***                   2.791 ***              
##                                   (0.109)                     (0.317)                 
## W.X10                             -0.027                       0.110                  
##                                   (0.170)                     (0.190)                 
## W.X10BA.AIInteractionQualityV      0.000                      -0.034                  
##                                   (0.040)                     (0.045)                 
## W.X01                              0.009                       0.023                  
##                                   (0.069)                     (0.216)                 
## BA.AIInteractionQualityV                                       0.374 ***              
##                                                               (0.075)                 
## W.X01:BA.AIInteractionQualityV                                -0.004                  
##                                                               (0.051)                 
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.000                       0.113                  
## Conditional R^2                    0.716                       0.717                  
## AIC                             2829.159                    2812.686                  
## BIC                             2882.900                    2876.198                  
## Num. obs.                        978                         978                      
## Num. groups: B.ID                163                         163                      
## Var: B.ID (Intercept)              1.644                       1.392                  
## Var: B.ID W.X10                    0.001                       0.000                  
## Var: B.ID W.X01                    0.173                       0.180                  
## Cov: B.ID (Intercept) W.X10       -0.036                      -0.015                  
## Cov: B.ID (Intercept) W.X01       -0.195                      -0.197                  
## Cov: B.ID W.X10 W.X01              0.004                       0.008                  
## Var: Residual                      0.614                       0.614                  
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.AIInteractionQualityV  0.00   1 189  .945    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.ThrivingInLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)                0.013 (0.099) 0.136  .892     [-0.180, 0.207]
##  4.006 (Mean)                0.009 (0.070) 0.123  .902     [-0.128, 0.145]
##  5.372 (+ SD)                0.004 (0.099) 0.039  .969     [-0.190, 0.197]
## ──────────────────────────────────────────────────────────────────────────
WP.LearningBehavior.Sb01=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X01", mods="BA.AIInteractionQualityV",covs=c("W.X10","W.X10BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X10, W.X10BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X10 + W.X10BA.AIInteractionQualityV + W.X01*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ──────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.549 ***                 1.676 ***            
##                                   (0.123)                   (0.348)               
## W.X10                             -0.105                     0.050                
##                                   (0.186)                   (0.212)               
## W.X10BA.AIInteractionQualityV      0.057                     0.018                
##                                   (0.043)                   (0.050)               
## W.X01                              0.017                    -0.075                
##                                   (0.070)                   (0.217)               
## BA.AIInteractionQualityV                                     0.467 ***            
##                                                             (0.082)               
## W.X01:BA.AIInteractionQualityV                               0.023                
##                                                             (0.051)               
## ──────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.002                     0.155                
## Conditional R^2                    0.726                     0.730                
## AIC                             3009.655                  2985.372                
## BIC                             3063.395                  3048.884                
## Num. obs.                        978                       978                    
## Num. groups: B.ID                163                       163                    
## Var: B.ID (Intercept)              2.075                     1.677                
## Var: B.ID W.X10                    0.004                     0.002                
## Var: B.ID W.X01                    0.037                     0.037                
## Cov: B.ID (Intercept) W.X10       -0.057                    -0.024                
## Cov: B.ID (Intercept) W.X01       -0.069                    -0.090                
## Cov: B.ID W.X10 W.X01             -0.008                    -0.007                
## Var: Residual                      0.758                     0.758                
## ──────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.AIInteractionQualityV  0.20   1 309  .656    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.LearningBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.      t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)               -0.014 (0.099) -0.145  .885     [-0.209, 0.180]
##  4.006 (Mean)                0.017 (0.070)  0.241  .810     [-0.120, 0.154]
##  5.372 (+ SD)                0.048 (0.099)  0.485  .628     [-0.146, 0.242]
## ───────────────────────────────────────────────────────────────────────────
WP.SocialLearning.Sb01=PROCESS(data2, y="WP.SocialLearningV", x="W.X01", mods="BA.AIInteractionQualityV",covs=c("W.X10","W.X10BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X10, W.X10BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X10 + W.X10BA.AIInteractionQualityV + W.X01*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ──────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.656 ***               1.986 ***          
##                                   (0.109)                 (0.309)             
## W.X10                             -0.801 ***              -0.477 *            
##                                   (0.181)                 (0.211)             
## W.X10BA.AIInteractionQualityV      0.229 ***               0.148 **           
##                                   (0.042)                 (0.050)             
## W.X01                              0.073                   0.065              
##                                   (0.068)                 (0.211)             
## BA.AIInteractionQualityV                                   0.417 ***          
##                                                           (0.073)             
## W.X01:BA.AIInteractionQualityV                             0.002              
##                                                           (0.050)             
## ──────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.015                   0.175              
## Conditional R^2                    0.675                   0.689              
## AIC                             2942.661                2921.419              
## BIC                             2996.402                2984.931              
## Num. obs.                        978                     978                  
## Num. groups: B.ID                163                     163                  
## Var: B.ID (Intercept)              1.569                   1.253              
## Var: B.ID W.X10                    0.026                   0.017              
## Var: B.ID W.X01                    0.012                   0.012              
## Cov: B.ID (Intercept) W.X10       -0.143                  -0.083              
## Cov: B.ID (Intercept) W.X01        0.022                   0.020              
## Cov: B.ID W.X10 W.X01             -0.014                  -0.013              
## Var: Residual                      0.739                   0.740              
## ──────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.AIInteractionQualityV  0.00   1 553  .970    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)                0.070 (0.096) 0.732  .465     [-0.118, 0.259]
##  4.006 (Mean)                0.073 (0.068) 1.073  .284     [-0.060, 0.206]
##  5.372 (+ SD)                0.075 (0.096) 0.785  .433     [-0.113, 0.264]
## ──────────────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.Sb01=PROCESS(data2, y="WP.IndependentObservationBasedSocialLearningV", x="W.X01", mods="BA.AIInteractionQualityV",covs=c("W.X10","W.X10BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X10, W.X10BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X10 + W.X10BA.AIInteractionQualityV + W.X01*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.695 ***                                          2.096 ***                                     
##                                   (0.121)                                            (0.353)                                        
## W.X10                             -0.744 ***                                         -0.454                                         
##                                   (0.210)                                            (0.248)                                        
## W.X10BA.AIInteractionQualityV      0.229 ***                                          0.156 **                                      
##                                   (0.048)                                            (0.059)                                        
## W.X01                              0.078                                              0.054                                         
##                                   (0.080)                                            (0.247)                                        
## BA.AIInteractionQualityV                                                              0.399 ***                                     
##                                                                                      (0.083)                                        
## W.X01:BA.AIInteractionQualityV                                                        0.006                                         
##                                                                                      (0.058)                                        
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.013                                              0.133                                         
## Conditional R^2                    0.641                                              0.653                                         
## AIC                             3240.974                                           3227.634                                         
## BIC                             3294.714                                           3291.146                                         
## Num. obs.                        978                                                978                                             
## Num. groups: B.ID                163                                                163                                             
## Var: B.ID (Intercept)              1.880                                              1.593                                         
## Var: B.ID W.X10                    0.009                                              0.004                                         
## Var: B.ID W.X01                    0.000                                              0.000                                         
## Cov: B.ID (Intercept) W.X10       -0.133                                             -0.082                                         
## Cov: B.ID (Intercept) W.X01        0.026                                              0.022                                         
## Cov: B.ID W.X10 W.X01             -0.002                                             -0.001                                         
## Var: Residual                      1.038                                              1.038                                         
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.AIInteractionQualityV  0.01   1 809  .919    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)                0.070 (0.113) 0.621  .535     [-0.151, 0.291]
##  4.006 (Mean)                0.078 (0.080) 0.980  .327     [-0.078, 0.235]
##  5.372 (+ SD)                0.086 (0.113) 0.765  .444     [-0.135, 0.308]
## ──────────────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.Sb01=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X01", mods="BA.AIInteractionQualityV",covs=c("W.X10","W.X10BA.AIInteractionQualityV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIInteractionQualityV
## - Covariates (C) : W.X10, W.X10BA.AIInteractionQualityV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X10 + W.X10BA.AIInteractionQualityV + W.X01*BA.AIInteractionQualityV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                 (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                        3.617 ***                                  1.877 ***                             
##                                   (0.111)                                    (0.315)                                
## W.X10                             -0.908 ***                                 -0.500 *                               
##                                   (0.217)                                    (0.250)                                
## W.X10BA.AIInteractionQualityV      0.241 ***                                  0.139 *                               
##                                   (0.050)                                    (0.059)                                
## W.X01                              0.067                                      0.076                                 
##                                   (0.083)                                    (0.260)                                
## BA.AIInteractionQualityV                                                      0.434 ***                             
##                                                                              (0.074)                                
## W.X01:BA.AIInteractionQualityV                                               -0.002                                 
##                                                                              (0.061)                                
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                       0.014                                      0.162                                 
## Conditional R^2                    0.593                                      0.608                                 
## AIC                             3246.811                                   3223.892                                 
## BIC                             3300.552                                   3287.404                                 
## Num. obs.                        978                                        978                                     
## Num. groups: B.ID                163                                        163                                     
## Var: B.ID (Intercept)              1.488                                      1.153                                 
## Var: B.ID W.X10                    0.025                                      0.000                                 
## Var: B.ID W.X01                    0.050                                      0.085                                 
## Cov: B.ID (Intercept) W.X10       -0.096                                     -0.024                                 
## Cov: B.ID (Intercept) W.X01        0.086                                      0.066                                 
## Cov: B.ID W.X10 W.X01             -0.034                                     -0.001                                 
## Var: Residual                      1.060                                      1.062                                 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────
##                                      F df1 df2     p    
## ────────────────────────────────────────────────────────
## W.X01 * BA.AIInteractionQualityV  0.00   1 262  .971    
## ────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────────
##  "BA.AIInteractionQualityV" Effect    S.E.     t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────
##  2.640 (- SD)                0.071 (0.119) 0.594  .553     [-0.162, 0.303]
##  4.006 (Mean)                0.067 (0.084) 0.804  .422     [-0.097, 0.232]
##  5.372 (+ SD)                0.064 (0.119) 0.543  .588     [-0.168, 0.297]
## ──────────────────────────────────────────────────────────────────────────

6 BA.EffectivenessV

6.1 Study 1

WA.LearningFromOperationalFailure.S1=PROCESS(data1, y="WA.LearningFromOperationalFailureV", x="W.X", mods="BA.EffectivenessV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X*BA.EffectivenessV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.779 ***                               4.082 ***                          
##                              (0.085)                                 (0.251)                             
## W.X                           0.139                                  -0.189                              
##                              (0.073)                                 (0.219)                             
## BA.EffectivenessV                                                     0.178 **                           
##                                                                      (0.060)                             
## W.X:BA.EffectivenessV                                                 0.084                              
##                                                                      (0.053)                             
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                   0.061                              
## Conditional R^2               0.458                                   0.463                              
## AIC                        2057.038                                2049.337                              
## BIC                        2084.028                                2085.323                              
## Num. obs.                   664                                     664                                  
## Num. groups: B.ID           166                                     166                                  
## Var: B.ID (Intercept)         0.758                                   0.707                              
## Var: B.ID W.X                 0.001                                   0.005                              
## Cov: B.ID (Intercept) W.X    -0.023                                  -0.058                              
## Var: Residual                 0.875                                   0.871                              
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ───────────────────────────────────────────────
##                             F df1 df2     p    
## ───────────────────────────────────────────────
## W.X * BA.EffectivenessV  2.52   1 483  .113    
## ───────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ───────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────
##  2.544 (- SD)         0.024 (0.103) 0.233  .816     [-0.177, 0.225]
##  3.920 (Mean)         0.139 (0.073) 1.918  .056 .   [-0.003, 0.282]
##  5.296 (+ SD)         0.255 (0.103) 2.479  .014 *   [ 0.053, 0.456]
## ───────────────────────────────────────────────────────────────────
WA.LearningFromErrors.S1=PROCESS(data1, y="WA.LearningFromErrorsV", x="W.X", mods="BA.EffectivenessV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X*BA.EffectivenessV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.291 ***                   2.984 ***              
##                              (0.104)                     (0.297)                 
## W.X                           0.031                       0.132                  
##                              (0.075)                     (0.226)                 
## BA.EffectivenessV                                         0.333 ***              
##                                                          (0.072)                 
## W.X:BA.EffectivenessV                                    -0.026                  
##                                                          (0.054)                 
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.000                       0.091                  
## Conditional R^2               0.612                       0.613                  
## AIC                        2122.701                    2111.213                  
## BIC                        2149.690                    2147.199                  
## Num. obs.                   664                         664                      
## Num. groups: B.ID           166                         166                      
## Var: B.ID (Intercept)         1.395                       1.193                  
## Var: B.ID W.X                 0.094                       0.098                  
## Cov: B.ID (Intercept) W.X    -0.131                      -0.118                  
## Var: Residual                 0.832                       0.832                  
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ───────────────────────────────────────────────
##                             F df1 df2     p    
## ───────────────────────────────────────────────
## W.X * BA.EffectivenessV  0.22   1 164  .637    
## ───────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.544 (- SD)         0.066 (0.106)  0.626  .532     [-0.141, 0.274]
##  3.920 (Mean)         0.031 (0.075)  0.412  .681     [-0.116, 0.178]
##  5.296 (+ SD)        -0.005 (0.106) -0.043  .965     [-0.212, 0.203]
## ────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.S1=PROCESS(data1, y="WA.ThrivingInLearningV", x="W.X", mods="BA.EffectivenessV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)##
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X*BA.EffectivenessV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.702 ***                   3.235 ***              
##                              (0.093)                     (0.255)                 
## W.X                          -0.058                       0.464 *                
##                              (0.062)                     (0.185)                 
## BA.EffectivenessV                                         0.374 ***              
##                                                          (0.061)                 
## W.X:BA.EffectivenessV                                    -0.133 **               
##                                                          (0.045)                 
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.001                       0.116                  
## Conditional R^2               0.616                       0.620                  
## AIC                        1920.298                    1898.828                  
## BIC                        1947.288                    1934.814                  
## Num. obs.                   664                         664                      
## Num. groups: B.ID           166                         166                      
## Var: B.ID (Intercept)         1.132                       0.878                  
## Var: B.ID W.X                 0.018                       0.004                  
## Cov: B.ID (Intercept) W.X    -0.142                      -0.057                  
## Var: Residual                 0.624                       0.619                  
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ───────────────────────────────────────────────
##                             F df1 df2     p    
## ───────────────────────────────────────────────
## W.X * BA.EffectivenessV  8.93   1 482  .003 ** 
## ───────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.ThrivingInLearningV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.544 (- SD)         0.125 (0.087)  1.447  .149     [-0.044,  0.295]
##  3.920 (Mean)        -0.058 (0.061) -0.945  .345     [-0.178,  0.062]
##  5.296 (+ SD)        -0.241 (0.087) -2.782  .006 **  [-0.411, -0.071]
## ─────────────────────────────────────────────────────────────────────
WP.LearningBehavior.S1=PROCESS(data1, y="WP.LearningBehaviorV", x="W.X", mods="BA.EffectivenessV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X*BA.EffectivenessV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────
##                            (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ─────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.648 ***                 2.188 ***            
##                              (0.111)                   (0.315)               
## W.X                          -0.056                     0.070                
##                              (0.093)                   (0.281)               
## BA.EffectivenessV                                       0.372 ***            
##                                                        (0.076)               
## W.X:BA.EffectivenessV                                  -0.032                
##                                                        (0.068)               
## ─────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.000                     0.090                
## Conditional R^2               0.466                     0.467                
## AIC                        2385.192                  2369.285                
## BIC                        2412.181                  2405.272                
## Num. obs.                   664                       664                    
## Num. groups: B.ID           166                       166                    
## Var: B.ID (Intercept)         1.343                     1.087                
## Var: B.ID W.X                 0.008                     0.006                
## Cov: B.ID (Intercept) W.X    -0.103                    -0.081                
## Var: Residual                 1.426                     1.429                
## ─────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ───────────────────────────────────────────────
##                             F df1 df2     p    
## ───────────────────────────────────────────────
## W.X * BA.EffectivenessV  0.23   1 486  .635    
## ───────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.LearningBehaviorV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.544 (- SD)        -0.012 (0.132) -0.088  .930     [-0.269, 0.246]
##  3.920 (Mean)        -0.056 (0.093) -0.599  .549     [-0.238, 0.127]
##  5.296 (+ SD)        -0.100 (0.132) -0.759  .448     [-0.358, 0.158]
## ────────────────────────────────────────────────────────────────────
WP.SocialLearning.S1=PROCESS(data1, y="WP.SocialLearningV", x="W.X", mods="BA.EffectivenessV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)#
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X*BA.EffectivenessV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────
##                            (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ─────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.759 ***               1.951 ***          
##                              (0.104)                 (0.278)             
## W.X                          -0.178 *                -0.061              
##                              (0.079)                 (0.240)             
## BA.EffectivenessV                                     0.461 ***          
##                                                      (0.067)             
## W.X:BA.EffectivenessV                                -0.030              
##                                                      (0.058)             
## ─────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.004                   0.172              
## Conditional R^2               0.535                   0.536              
## AIC                        2211.535                2173.141              
## BIC                        2238.525                2209.128              
## Num. obs.                   664                     664                  
## Num. groups: B.ID           166                     166                  
## Var: B.ID (Intercept)         1.282                   0.884              
## Var: B.ID W.X                 0.007                   0.006              
## Cov: B.ID (Intercept) W.X    -0.097                  -0.071              
## Var: Residual                 1.040                   1.042              
## ─────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ───────────────────────────────────────────────
##                             F df1 df2     p    
## ───────────────────────────────────────────────
## W.X * BA.EffectivenessV  0.27   1 484  .605    
## ───────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.544 (- SD)        -0.137 (0.112) -1.222  .222     [-0.358,  0.083]
##  3.920 (Mean)        -0.178 (0.079) -2.247  .025 *   [-0.334, -0.023]
##  5.296 (+ SD)        -0.220 (0.112) -1.954  .051 .   [-0.440,  0.001]
## ─────────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.S1=PROCESS(data1, y="WP.IndependentObservationBasedSocialLearningV", x="W.X", mods="BA.EffectivenessV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X*BA.EffectivenessV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.736 ***                                          2.073 ***                                     
##                              (0.114)                                            (0.318)                                        
## W.X                          -0.170                                             -0.282                                         
##                              (0.094)                                            (0.286)                                        
## BA.EffectivenessV                                                                0.424 ***                                     
##                                                                                 (0.077)                                        
## W.X:BA.EffectivenessV                                                            0.029                                         
##                                                                                 (0.069)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                              0.132                                         
## Conditional R^2               0.478                                              0.480                                         
## AIC                        2410.168                                           2380.639                                         
## BIC                        2437.158                                           2416.625                                         
## Num. obs.                   664                                                664                                             
## Num. groups: B.ID           166                                                166                                             
## Var: B.ID (Intercept)         1.438                                              1.103                                         
## Var: B.ID W.X                 0.007                                              0.015                                         
## Cov: B.ID (Intercept) W.X    -0.104                                             -0.128                                         
## Var: Residual                 1.469                                              1.468                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────
##                             F df1 df2     p    
## ───────────────────────────────────────────────
## W.X * BA.EffectivenessV  0.17   1 473  .677    
## ───────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.544 (- SD)        -0.210 (0.134) -1.567  .118     [-0.472, 0.053]
##  3.920 (Mean)        -0.170 (0.095) -1.800  .072 .   [-0.355, 0.015]
##  5.296 (+ SD)        -0.131 (0.134) -0.978  .329     [-0.393, 0.131]
## ────────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.S1=PROCESS(data1, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X", mods="BA.EffectivenessV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)##
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X*BA.EffectivenessV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.782 ***                                  1.828 ***                             
##                              (0.112)                                    (0.300)                                
## W.X                          -0.187 *                                    0.160                                 
##                              (0.091)                                    (0.275)                                
## BA.EffectivenessV                                                        0.498 ***                             
##                                                                         (0.072)                                
## W.X:BA.EffectivenessV                                                   -0.088                                 
##                                                                         (0.066)                                
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                      0.152                                 
## Conditional R^2               0.483                                      0.484                                 
## AIC                        2364.000                                   2328.403                                 
## BIC                        2390.990                                   2364.389                                 
## Num. obs.                   664                                        664                                     
## Num. groups: B.ID           166                                        166                                     
## Var: B.ID (Intercept)         1.418                                      0.956                                 
## Var: B.ID W.X                 0.018                                      0.007                                 
## Cov: B.ID (Intercept) W.X    -0.159                                     -0.080                                 
## Var: Residual                 1.365                                      1.366                                 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────
##                             F df1 df2     p    
## ───────────────────────────────────────────────
## W.X * BA.EffectivenessV  1.79   1 484  .182    
## ───────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.544 (- SD)        -0.065 (0.129) -0.506  .613     [-0.317,  0.187]
##  3.920 (Mean)        -0.187 (0.091) -2.053  .041 *   [-0.365, -0.008]
##  5.296 (+ SD)        -0.308 (0.129) -2.397  .017 *   [-0.561, -0.056]
## ─────────────────────────────────────────────────────────────────────

6.2 Study 2

6.2.1 AI VS Control

WA.LearningFromOperationalFailure.Sb10=PROCESS(data2, y="WA.LearningFromOperationalFailureV", x="W.X10", mods="BA.EffectivenessV",covs=c("W.X01","W.X01BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X01, W.X01BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X01 + W.X01BA.EffectivenessV + W.X10*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.363 ***                               3.189 ***                          
##                                (0.109)                                 (0.326)                             
## W.X01                          -0.119                                   0.143                              
##                                (0.192)                                 (0.225)                             
## W.X01BA.EffectivenessV          0.067                                   0.001                              
##                                (0.045)                                 (0.053)                             
## W.X10                           0.113                                   0.307                              
##                                (0.072)                                 (0.225)                             
## BA.EffectivenessV                                                       0.295 ***                          
##                                                                        (0.077)                             
## W.X10:BA.EffectivenessV                                                -0.049                              
##                                                                        (0.054)                             
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.003                                   0.066                              
## Conditional R^2                 0.617                                   0.622                              
## AIC                          3024.583                                3021.510                              
## BIC                          3078.323                                3085.021                              
## Num. obs.                     978                                     978                                  
## Num. groups: B.ID             163                                     163                                  
## Var: B.ID (Intercept)           1.501                                   1.353                              
## Var: B.ID W.X10                 0.011                                   0.008                              
## Var: B.ID W.X01                 0.007                                   0.004                              
## Cov: B.ID (Intercept) W.X10    -0.131                                  -0.107                              
## Cov: B.ID (Intercept) W.X01    -0.103                                  -0.071                              
## Cov: B.ID W.X10 W.X01           0.009                                   0.006                              
## Var: Residual                   0.842                                   0.842                              
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X10 * BA.EffectivenessV  0.83   1 747  .362    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ───────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────
##  2.634 (- SD)         0.179 (0.102) 1.748  .081 .   [-0.022, 0.379]
##  3.982 (Mean)         0.113 (0.072) 1.561  .119     [-0.029, 0.254]
##  5.329 (+ SD)         0.047 (0.102) 0.459  .647     [-0.153, 0.247]
## ───────────────────────────────────────────────────────────────────
WA.LearningFromErrors.Sb10=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X10", mods="BA.EffectivenessV",covs=c("W.X01","W.X01BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X01, W.X01BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X01 + W.X01BA.EffectivenessV + W.X10*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.163 ***                   2.845 ***              
##                                (0.118)                     (0.354)                 
## W.X01                          -0.515 **                   -0.273                  
##                                (0.190)                     (0.218)                 
## W.X01BA.EffectivenessV          0.135 **                    0.074                  
##                                (0.044)                     (0.052)                 
## W.X10                           0.038                       0.244                  
##                                (0.068)                     (0.212)                 
## BA.EffectivenessV                                           0.331 ***              
##                                                            (0.084)                 
## W.X10:BA.EffectivenessV                                    -0.052                  
##                                                            (0.050)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.004                       0.080                  
## Conditional R^2                 0.711                       0.716                  
## AIC                          2988.414                    2985.032                  
## BIC                          3042.155                    3048.543                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.904                       1.720                  
## Var: B.ID W.X10                 0.007                       0.000                  
## Var: B.ID W.X01                 0.039                       0.046                  
## Cov: B.ID (Intercept) W.X10    -0.052                      -0.026                  
## Cov: B.ID (Intercept) W.X01    -0.073                      -0.048                  
## Cov: B.ID W.X10 W.X01          -0.012                       0.001                  
## Var: Residual                   0.749                       0.752                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X10 * BA.EffectivenessV  1.06   1 647  .304    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.634 (- SD)         0.107 (0.096)  1.119  .264     [-0.081, 0.296]
##  3.982 (Mean)         0.038 (0.068)  0.553  .580     [-0.096, 0.171]
##  5.329 (+ SD)        -0.032 (0.096) -0.337  .737     [-0.221, 0.156]
## ────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.Sb10=PROCESS(data2, y="WA.ThrivingInLearningV", x="W.X10", mods="BA.EffectivenessV",covs=c("W.X01","W.X01BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X01, W.X01BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X01 + W.X01BA.EffectivenessV + W.X10*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.291 ***                   2.705 ***              
##                                (0.109)                     (0.316)                 
## W.X01                          -0.242                       0.098                  
##                                (0.188)                     (0.218)                 
## W.X01BA.EffectivenessV          0.063                      -0.022                  
##                                (0.044)                     (0.052)                 
## W.X10                          -0.026                      -0.019                  
##                                (0.061)                     (0.192)                 
## BA.EffectivenessV                                           0.398 ***              
##                                                            (0.075)                 
## W.X10:BA.EffectivenessV                                    -0.002                  
##                                                            (0.046)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                       0.128                  
## Conditional R^2                 0.713                       0.717                  
## AIC                          2827.224                    2810.045                  
## BIC                          2880.964                    2873.557                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.645                       1.365                  
## Var: B.ID W.X10                 0.001                       0.001                  
## Var: B.ID W.X01                 0.193                       0.179                  
## Cov: B.ID (Intercept) W.X10    -0.038                      -0.037                  
## Cov: B.ID (Intercept) W.X01    -0.244                      -0.183                  
## Cov: B.ID W.X10 W.X01           0.009                       0.008                  
## Var: Residual                   0.613                       0.614                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X10 * BA.EffectivenessV  0.00   1 642  .968    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.ThrivingInLearningV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.634 (- SD)        -0.024 (0.087) -0.275  .783     [-0.194, 0.146]
##  3.982 (Mean)        -0.026 (0.061) -0.429  .668     [-0.147, 0.094]
##  5.329 (+ SD)        -0.029 (0.087) -0.332  .740     [-0.199, 0.141]
## ────────────────────────────────────────────────────────────────────
WP.LearningBehavior.Sb10=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X10", mods="BA.EffectivenessV",covs=c("W.X01","W.X01BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X01, W.X01BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X01 + W.X01BA.EffectivenessV + W.X10*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────
##                              (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ───────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.549 ***                 1.594 ***            
##                                (0.123)                   (0.348)               
## W.X01                          -0.004                     0.122                
##                                (0.190)                   (0.218)               
## W.X01BA.EffectivenessV          0.005                    -0.026                
##                                (0.044)                   (0.052)               
## W.X10                           0.124                    -0.112                
##                                (0.068)                   (0.213)               
## BA.EffectivenessV                                         0.491 ***            
##                                                          (0.083)               
## W.X10:BA.EffectivenessV                                   0.059                
##                                                          (0.051)               
## ───────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                     0.165                
## Conditional R^2                 0.729                     0.730                
## AIC                          3011.009                  2980.557                
## BIC                          3064.749                  3044.069                
## Num. obs.                     978                       978                    
## Num. groups: B.ID             163                       163                    
## Var: B.ID (Intercept)           2.075                     1.647                
## Var: B.ID W.X10                 0.002                     0.002                
## Var: B.ID W.X01                 0.038                     0.035                
## Cov: B.ID (Intercept) W.X10    -0.007                    -0.064                
## Cov: B.ID (Intercept) W.X01    -0.072                    -0.046                
## Cov: B.ID W.X10 W.X01          -0.008                     0.002                
## Var: Residual                   0.758                     0.759                
## ───────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X10 * BA.EffectivenessV  1.37   1 633  .242    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.LearningBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────
##  2.634 (- SD)         0.044 (0.097) 0.457  .648     [-0.145, 0.234]
##  3.982 (Mean)         0.124 (0.068) 1.818  .069 .   [-0.010, 0.258]
##  5.329 (+ SD)         0.204 (0.097) 2.114  .035 *   [ 0.015, 0.394]
## ───────────────────────────────────────────────────────────────────
WP.SocialLearning.Sb10=PROCESS(data2, y="WP.SocialLearningV", x="W.X10", mods="BA.EffectivenessV",covs=c("W.X01","W.X01BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X01, W.X01BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X01 + W.X01BA.EffectivenessV + W.X10*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────
##                              (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ───────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.656 ***               1.804 ***          
##                                (0.109)                 (0.304)             
## W.X01                           0.142                   0.124              
##                                (0.189)                 (0.212)             
## W.X01BA.EffectivenessV         -0.017                  -0.013              
##                                (0.044)                 (0.050)             
## W.X10                           0.115                  -0.389              
##                                (0.069)                 (0.213)             
## BA.EffectivenessV                                       0.465 ***          
##                                                        (0.072)             
## W.X10:BA.EffectivenessV                                 0.127 *            
##                                                        (0.051)             
## ───────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                   0.197              
## Conditional R^2                 0.688                   0.688              
## AIC                          2965.492                2916.999              
## BIC                          3019.233                2980.511              
## Num. obs.                     978                     978                  
## Num. groups: B.ID             163                     163                  
## Var: B.ID (Intercept)           1.566                   1.181              
## Var: B.ID W.X10                 0.030                   0.018              
## Var: B.ID W.X01                 0.015                   0.012              
## Cov: B.ID (Intercept) W.X10     0.045                  -0.070              
## Cov: B.ID (Intercept) W.X01     0.039                   0.034              
## Cov: B.ID W.X10 W.X01          -0.019                  -0.014              
## Var: Residual                   0.742                   0.741              
## ───────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X10 * BA.EffectivenessV  6.24   1 509  .013 *  
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.634 (- SD)        -0.056 (0.097) -0.575  .566     [-0.245, 0.134]
##  3.982 (Mean)         0.115 (0.068)  1.686  .092 .   [-0.019, 0.249]
##  5.329 (+ SD)         0.286 (0.097)  2.958  .003 **  [ 0.096, 0.475]
## ────────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.Sb10=PROCESS(data2, y="WP.IndependentObservationBasedSocialLearningV", x="W.X10", mods="BA.EffectivenessV",covs=c("W.X01","W.X01BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X01, W.X01BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X01 + W.X01BA.EffectivenessV + W.X10*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.695 ***                                          1.822 ***                                     
##                                (0.121)                                            (0.346)                                        
## W.X01                           0.145                                              0.034                                         
##                                (0.217)                                            (0.248)                                        
## W.X01BA.EffectivenessV         -0.017                                              0.011                                         
##                                (0.051)                                            (0.059)                                        
## W.X10                           0.172 *                                           -0.571 *                                       
##                                (0.081)                                            (0.250)                                        
## BA.EffectivenessV                                                                  0.470 ***                                     
##                                                                                   (0.082)                                        
## W.X10:BA.EffectivenessV                                                            0.187 **                                      
##                                                                                   (0.059)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                                              0.181                                         
## Conditional R^2                 0.653                                              0.655                                         
## AIC                          3259.009                                           3209.045                                         
## BIC                          3312.750                                           3272.557                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           1.878                                              1.491                                         
## Var: B.ID W.X10                 0.033                                              0.012                                         
## Var: B.ID W.X01                 0.001                                              0.000                                         
## Cov: B.ID (Intercept) W.X10     0.043                                             -0.134                                         
## Cov: B.ID (Intercept) W.X01     0.044                                              0.016                                         
## Cov: B.ID W.X10 W.X01          -0.001                                             -0.001                                         
## Var: Residual                   1.039                                              1.031                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X10 * BA.EffectivenessV  9.86   1 736  .002 ** 
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.634 (- SD)        -0.080 (0.113) -0.704  .482     [-0.301, 0.142]
##  3.982 (Mean)         0.172 (0.080)  2.147  .032 *   [ 0.015, 0.329]
##  5.329 (+ SD)         0.423 (0.113)  3.739 <.001 *** [ 0.201, 0.645]
## ────────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.Sb10=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X10", mods="BA.EffectivenessV",covs=c("W.X01","W.X01BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X01, W.X01BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X01 + W.X01BA.EffectivenessV + W.X10*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.617 ***                                  1.786 ***                             
##                                (0.111)                                    (0.314)                                
## W.X01                           0.073                                      0.214                                 
##                                (0.230)                                    (0.263)                                
## W.X01BA.EffectivenessV         -0.001                                     -0.037                                 
##                                (0.054)                                    (0.063)                                
## W.X10                           0.058                                     -0.207                                 
##                                (0.082)                                    (0.253)                                
## BA.EffectivenessV                                                          0.460 ***                             
##                                                                           (0.075)                                
## W.X10:BA.EffectivenessV                                                    0.067                                 
##                                                                           (0.060)                                
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                                      0.149                                 
## Conditional R^2                 0.608                                      0.606                                 
## AIC                          3264.469                                   3231.672                                 
## BIC                          3318.210                                   3295.184                                 
## Num. obs.                     978                                        978                                     
## Num. groups: B.ID             163                                        163                                     
## Var: B.ID (Intercept)           1.489                                      1.117                                 
## Var: B.ID W.X10                 0.038                                      0.002                                 
## Var: B.ID W.X01                 0.057                                      0.087                                 
## Cov: B.ID (Intercept) W.X10     0.100                                      0.043                                 
## Cov: B.ID (Intercept) W.X01     0.086                                      0.093                                 
## Cov: B.ID W.X10 W.X01          -0.034                                      0.004                                 
## Var: Residual                   1.060                                      1.069                                 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X10 * BA.EffectivenessV  1.22   1 639  .269    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.634 (- SD)        -0.031 (0.116) -0.271  .787     [-0.258, 0.196]
##  3.982 (Mean)         0.058 (0.082)  0.712  .477     [-0.102, 0.219]
##  5.329 (+ SD)         0.148 (0.116)  1.277  .202     [-0.079, 0.375]
## ────────────────────────────────────────────────────────────────────

6.2.2 AI VS Self

WA.LearningFromOperationalFailure.Sb01=PROCESS(data2, y="WA.LearningFromOperationalFailureV", x="W.X01", mods="BA.EffectivenessV",covs=c("W.X10","W.X10BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)#
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X10, W.X10BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X10 + W.X10BA.EffectivenessV + W.X01*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.363 ***                               3.189 ***                          
##                                (0.109)                                 (0.326)                             
## W.X10                           0.089                                   0.307                              
##                                (0.191)                                 (0.225)                             
## W.X10BA.EffectivenessV          0.006                                  -0.049                              
##                                (0.044)                                 (0.054)                             
## W.X01                           0.146 *                                 0.143                              
##                                (0.072)                                 (0.225)                             
## BA.EffectivenessV                                                       0.295 ***                          
##                                                                        (0.077)                             
## W.X01:BA.EffectivenessV                                                 0.001                              
##                                                                        (0.053)                             
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                                   0.066                              
## Conditional R^2                 0.620                                   0.622                              
## AIC                          3026.610                                3021.510                              
## BIC                          3080.350                                3085.021                              
## Num. obs.                     978                                     978                                  
## Num. groups: B.ID             163                                     163                                  
## Var: B.ID (Intercept)           1.502                                   1.353                              
## Var: B.ID W.X10                 0.012                                   0.008                              
## Var: B.ID W.X01                 0.003                                   0.004                              
## Cov: B.ID (Intercept) W.X10    -0.134                                  -0.107                              
## Cov: B.ID (Intercept) W.X01    -0.071                                  -0.071                              
## Cov: B.ID W.X10 W.X01           0.006                                   0.006                              
## Var: Residual                   0.842                                   0.842                              
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X01 * BA.EffectivenessV  0.00   1 780  .991    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ───────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────
##  2.634 (- SD)         0.145 (0.102) 1.422  .156     [-0.055, 0.345]
##  3.982 (Mean)         0.146 (0.072) 2.023  .043 *   [ 0.005, 0.287]
##  5.329 (+ SD)         0.147 (0.102) 1.438  .151     [-0.053, 0.346]
## ───────────────────────────────────────────────────────────────────
WA.LearningFromErrors.Sb01=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X01", mods="BA.EffectivenessV",covs=c("W.X10","W.X10BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X10, W.X10BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X10 + W.X10BA.EffectivenessV + W.X01*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.163 ***                   2.845 ***              
##                                (0.118)                     (0.354)                 
## W.X10                           0.216                       0.244                  
##                                (0.187)                     (0.212)                 
## W.X10BA.EffectivenessV         -0.045                      -0.052                  
##                                (0.044)                     (0.050)                 
## W.X01                           0.022                      -0.273                  
##                                (0.070)                     (0.218)                 
## BA.EffectivenessV                                           0.331 ***              
##                                                            (0.084)                 
## W.X01:BA.EffectivenessV                                     0.074                  
##                                                            (0.052)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                       0.080                  
## Conditional R^2                 0.718                       0.716                  
## AIC                          2995.766                    2985.032                  
## BIC                          3049.506                    3048.543                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.905                       1.720                  
## Var: B.ID W.X10                 0.007                       0.000                  
## Var: B.ID W.X01                 0.041                       0.046                  
## Cov: B.ID (Intercept) W.X10    -0.026                      -0.026                  
## Cov: B.ID (Intercept) W.X01     0.007                      -0.048                  
## Cov: B.ID W.X10 W.X01          -0.017                       0.001                  
## Var: Residual                   0.749                       0.752                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X01 * BA.EffectivenessV  2.03   1 267  .155    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromErrorsV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.634 (- SD)        -0.078 (0.098) -0.790  .430     [-0.270, 0.115]
##  3.982 (Mean)         0.022 (0.069)  0.321  .749     [-0.114, 0.158]
##  5.329 (+ SD)         0.122 (0.098)  1.243  .215     [-0.070, 0.314]
## ────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.Sb01=PROCESS(data2, y="WA.ThrivingInLearningV", x="W.X01", mods="BA.EffectivenessV",covs=c("W.X10","W.X10BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X10, W.X10BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X10 + W.X10BA.EffectivenessV + W.X01*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.291 ***                   2.705 ***              
##                                (0.109)                     (0.316)                 
## W.X10                          -0.220                      -0.019                  
##                                (0.171)                     (0.192)                 
## W.X10BA.EffectivenessV          0.049                      -0.002                  
##                                (0.040)                     (0.046)                 
## W.X01                           0.009                       0.098                  
##                                (0.070)                     (0.218)                 
## BA.EffectivenessV                                           0.398 ***              
##                                                            (0.075)                 
## W.X01:BA.EffectivenessV                                    -0.022                  
##                                                            (0.052)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                       0.128                  
## Conditional R^2                 0.713                       0.717                  
## AIC                          2827.896                    2810.045                  
## BIC                          2881.637                    2873.557                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.643                       1.365                  
## Var: B.ID W.X10                 0.003                       0.001                  
## Var: B.ID W.X01                 0.175                       0.179                  
## Cov: B.ID (Intercept) W.X10    -0.070                      -0.037                  
## Cov: B.ID (Intercept) W.X01    -0.196                      -0.183                  
## Cov: B.ID W.X10 W.X01           0.008                       0.008                  
## Var: Residual                   0.614                       0.614                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X01 * BA.EffectivenessV  0.19   1 175  .667    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.ThrivingInLearningV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.634 (- SD)         0.039 (0.099)  0.392  .695     [-0.155, 0.232]
##  3.982 (Mean)         0.009 (0.070)  0.123  .902     [-0.128, 0.145]
##  5.329 (+ SD)        -0.022 (0.099) -0.218  .828     [-0.215, 0.172]
## ────────────────────────────────────────────────────────────────────
WP.LearningBehavior.Sb01=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X01", mods="BA.EffectivenessV",covs=c("W.X10","W.X10BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X10, W.X10BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X10 + W.X10BA.EffectivenessV + W.X01*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────
##                              (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ───────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.549 ***                 1.594 ***            
##                                (0.123)                   (0.348)               
## W.X10                          -0.413 *                  -0.112                
##                                (0.184)                   (0.213)               
## W.X10BA.EffectivenessV          0.135 **                  0.059                
##                                (0.043)                   (0.051)               
## W.X01                           0.017                     0.122                
##                                (0.070)                   (0.218)               
## BA.EffectivenessV                                         0.491 ***            
##                                                          (0.083)               
## W.X01:BA.EffectivenessV                                  -0.026                
##                                                          (0.052)               
## ───────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.005                     0.165                
## Conditional R^2                 0.722                     0.730                
## AIC                          3003.266                  2980.557                
## BIC                          3057.007                  3044.069                
## Num. obs.                     978                       978                    
## Num. groups: B.ID             163                       163                    
## Var: B.ID (Intercept)           2.074                     1.647                
## Var: B.ID W.X10                 0.008                     0.002                
## Var: B.ID W.X01                 0.032                     0.035                
## Cov: B.ID (Intercept) W.X10    -0.128                    -0.064                
## Cov: B.ID (Intercept) W.X01    -0.068                    -0.046                
## Cov: B.ID W.X10 W.X01           0.004                     0.002                
## Var: Residual                   0.760                     0.759                
## ───────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X01 * BA.EffectivenessV  0.26   1 264  .612    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.LearningBehaviorV" (Y)
## ────────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.      t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────
##  2.634 (- SD)         0.052 (0.099)  0.530  .596     [-0.141, 0.246]
##  3.982 (Mean)         0.017 (0.070)  0.242  .809     [-0.120, 0.154]
##  5.329 (+ SD)        -0.019 (0.099) -0.188  .851     [-0.212, 0.175]
## ────────────────────────────────────────────────────────────────────
WP.SocialLearning.Sb01=PROCESS(data2, y="WP.SocialLearningV", x="W.X01", mods="BA.EffectivenessV",covs=c("W.X10","W.X10BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X10, W.X10BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X10 + W.X10BA.EffectivenessV + W.X01*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────
##                              (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ───────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.656 ***               1.804 ***          
##                                (0.109)                 (0.304)             
## W.X10                          -0.778 ***              -0.389              
##                                (0.182)                 (0.213)             
## W.X10BA.EffectivenessV          0.224 ***               0.127 *            
##                                (0.042)                 (0.051)             
## W.X01                           0.073                   0.124              
##                                (0.068)                 (0.212)             
## BA.EffectivenessV                                       0.465 ***          
##                                                        (0.072)             
## W.X01:BA.EffectivenessV                                -0.013              
##                                                        (0.050)             
## ───────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.014                   0.197              
## Conditional R^2                 0.674                   0.688              
## AIC                          2944.980                2916.999              
## BIC                          2998.721                2980.511              
## Num. obs.                     978                     978                  
## Num. groups: B.ID             163                     163                  
## Var: B.ID (Intercept)           1.566                   1.181              
## Var: B.ID W.X10                 0.029                   0.018              
## Var: B.ID W.X01                 0.010                   0.012              
## Cov: B.ID (Intercept) W.X10    -0.148                  -0.070              
## Cov: B.ID (Intercept) W.X01     0.025                   0.034              
## Cov: B.ID W.X10 W.X01          -0.015                  -0.014              
## Var: Residual                   0.741                   0.741              
## ───────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X01 * BA.EffectivenessV  0.06   1 563  .800    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────
##  2.634 (- SD)         0.090 (0.096) 0.937  .349     [-0.098, 0.279]
##  3.982 (Mean)         0.073 (0.068) 1.072  .284     [-0.060, 0.206]
##  5.329 (+ SD)         0.056 (0.096) 0.579  .563     [-0.133, 0.244]
## ───────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.Sb01=PROCESS(data2, y="WP.IndependentObservationBasedSocialLearningV", x="W.X01", mods="BA.EffectivenessV",covs=c("W.X10","W.X10BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X10, W.X10BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X10 + W.X10BA.EffectivenessV + W.X01*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.695 ***                                          1.822 ***                                     
##                                (0.121)                                            (0.346)                                        
## W.X10                          -0.977 ***                                         -0.571 *                                       
##                                (0.209)                                            (0.250)                                        
## W.X10BA.EffectivenessV          0.288 ***                                          0.187 **                                      
##                                (0.048)                                            (0.059)                                        
## W.X01                           0.078                                              0.034                                         
##                                (0.080)                                            (0.248)                                        
## BA.EffectivenessV                                                                  0.470 ***                                     
##                                                                                   (0.082)                                        
## W.X01:BA.EffectivenessV                                                            0.011                                         
##                                                                                   (0.059)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.019                                              0.181                                         
## Conditional R^2                 0.638                                              0.655                                         
## AIC                          3232.266                                           3209.045                                         
## BIC                          3286.007                                           3272.557                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           1.884                                              1.491                                         
## Var: B.ID W.X10                 0.025                                              0.012                                         
## Var: B.ID W.X01                 0.000                                              0.000                                         
## Cov: B.ID (Intercept) W.X10    -0.218                                             -0.134                                         
## Cov: B.ID (Intercept) W.X01     0.026                                              0.016                                         
## Cov: B.ID W.X10 W.X01          -0.003                                             -0.001                                         
## Var: Residual                   1.032                                              1.031                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X01 * BA.EffectivenessV  0.04   1 810  .849    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────
##  2.634 (- SD)         0.063 (0.113) 0.561  .575     [-0.157, 0.284]
##  3.982 (Mean)         0.078 (0.080) 0.983  .326     [-0.078, 0.234]
##  5.329 (+ SD)         0.093 (0.113) 0.829  .407     [-0.127, 0.314]
## ───────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.Sb01=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X01", mods="BA.EffectivenessV",covs=c("W.X10","W.X10BA.EffectivenessV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.EffectivenessV
## - Covariates (C) : W.X10, W.X10BA.EffectivenessV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X10 + W.X10BA.EffectivenessV + W.X01*BA.EffectivenessV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.617 ***                                  1.786 ***                             
##                                (0.111)                                    (0.314)                                
## W.X10                          -0.629 **                                  -0.207                                 
##                                (0.223)                                    (0.253)                                
## W.X10BA.EffectivenessV          0.173 ***                                  0.067                                 
##                                (0.052)                                    (0.060)                                
## W.X01                           0.067                                      0.214                                 
##                                (0.082)                                    (0.263)                                
## BA.EffectivenessV                                                          0.460 ***                             
##                                                                           (0.075)                                
## W.X01:BA.EffectivenessV                                                   -0.037                                 
##                                                                           (0.063)                                
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.007                                      0.149                                 
## Conditional R^2                 0.595                                      0.606                                 
## AIC                          3255.912                                   3231.672                                 
## BIC                          3309.653                                   3295.184                                 
## Num. obs.                     978                                        978                                     
## Num. groups: B.ID             163                                        163                                     
## Var: B.ID (Intercept)           1.481                                      1.117                                 
## Var: B.ID W.X10                 0.038                                      0.002                                 
## Var: B.ID W.X01                 0.037                                      0.087                                 
## Cov: B.ID (Intercept) W.X10    -0.035                                      0.043                                 
## Cov: B.ID (Intercept) W.X01     0.094                                      0.093                                 
## Cov: B.ID W.X10 W.X01          -0.036                                      0.004                                 
## Var: Residual                   1.064                                      1.069                                 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X01 * BA.EffectivenessV  0.35   1 264  .557    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────
##  "BA.EffectivenessV" Effect    S.E.     t     p            [95% CI]
## ───────────────────────────────────────────────────────────────────
##  2.634 (- SD)         0.117 (0.117) 1.001  .318     [-0.112, 0.346]
##  3.982 (Mean)         0.067 (0.083) 0.817  .415     [-0.094, 0.229]
##  5.329 (+ SD)         0.018 (0.117) 0.153  .878     [-0.211, 0.247]
## ───────────────────────────────────────────────────────────────────

7 BA.PersonalControlV

7.1 Study 1

WA.LearningFromOperationalFailure.S1=PROCESS(data1, y="WA.LearningFromOperationalFailureV", x="W.X", mods="BA.PersonalControlV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X*BA.PersonalControlV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.779 ***                               5.840 ***                          
##                              (0.085)                                 (0.271)                             
## W.X                           0.139                                  -0.005                              
##                              (0.073)                                 (0.243)                             
## BA.PersonalControlV                                                  -0.261 ***                          
##                                                                      (0.064)                             
## W.X:BA.PersonalControlV                                               0.035                              
##                                                                      (0.057)                             
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                   0.063                              
## Conditional R^2               0.458                                   0.460                              
## AIC                        2057.038                                2050.903                              
## BIC                        2084.028                                2086.889                              
## Num. obs.                   664                                     664                                  
## Num. groups: B.ID           166                                     166                                  
## Var: B.ID (Intercept)         0.758                                   0.653                              
## Var: B.ID W.X                 0.001                                   0.000                              
## Cov: B.ID (Intercept) W.X    -0.023                                  -0.009                              
## Var: Residual                 0.875                                   0.876                              
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X * BA.PersonalControlV  0.39   1 496  .534    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.794 (- SD)           0.094 (0.103) 0.915  .361     [-0.107, 0.296]
##  4.072 (Mean)           0.139 (0.073) 1.917  .056 .   [-0.003, 0.282]
##  5.350 (+ SD)           0.185 (0.103) 1.795  .073 .   [-0.017, 0.386]
## ─────────────────────────────────────────────────────────────────────
WA.LearningFromErrors.S1=PROCESS(data1, y="WA.LearningFromErrorsV", x="W.X", mods="BA.PersonalControlV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X*BA.PersonalControlV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.291 ***                   5.583 ***              
##                              (0.104)                     (0.334)                 
## W.X                           0.031                      -0.340                  
##                              (0.075)                     (0.249)                 
## BA.PersonalControlV                                      -0.317 ***              
##                                                          (0.078)                 
## W.X:BA.PersonalControlV                                   0.091                  
##                                                          (0.058)                 
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.000                       0.058                  
## Conditional R^2               0.612                       0.614                  
## AIC                        2122.701                    2118.213                  
## BIC                        2149.690                    2154.199                  
## Num. obs.                   664                         664                      
## Num. groups: B.ID           166                         166                      
## Var: B.ID (Intercept)         1.395                       1.240                  
## Var: B.ID W.X                 0.094                       0.086                  
## Cov: B.ID (Intercept) W.X    -0.131                      -0.086                  
## Var: Residual                 0.832                       0.832                  
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X * BA.PersonalControlV  2.45   1 164  .120    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.LearningFromErrorsV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.794 (- SD)          -0.086 (0.105) -0.813  .417     [-0.292, 0.121]
##  4.072 (Mean)           0.031 (0.074)  0.415  .678     [-0.115, 0.177]
##  5.350 (+ SD)           0.147 (0.105)  1.401  .163     [-0.059, 0.353]
## ──────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.S1=PROCESS(data1, y="WA.ThrivingInLearningV", x="W.X", mods="BA.PersonalControlV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X*BA.PersonalControlV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────
##                            (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ─────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.702 ***                   5.760 ***              
##                              (0.093)                     (0.300)                 
## W.X                          -0.058                      -0.295                  
##                              (0.062)                     (0.207)                 
## BA.PersonalControlV                                      -0.260 ***              
##                                                          (0.070)                 
## W.X:BA.PersonalControlV                                   0.058                  
##                                                          (0.049)                 
## ─────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.001                       0.055                  
## Conditional R^2               0.616                       0.617                  
## AIC                        1920.298                    1918.763                  
## BIC                        1947.288                    1954.749                  
## Num. obs.                   664                         664                      
## Num. groups: B.ID           166                         166                      
## Var: B.ID (Intercept)         1.132                       1.028                  
## Var: B.ID W.X                 0.018                       0.014                  
## Cov: B.ID (Intercept) W.X    -0.142                      -0.118                  
## Var: Residual                 0.624                       0.625                  
## ─────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X * BA.PersonalControlV  1.43   1 451  .232    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WA.ThrivingInLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.794 (- SD)          -0.132 (0.088) -1.507  .133     [-0.304, 0.040]
##  4.072 (Mean)          -0.058 (0.062) -0.933  .352     [-0.179, 0.064]
##  5.350 (+ SD)           0.017 (0.088)  0.188  .851     [-0.155, 0.188]
## ──────────────────────────────────────────────────────────────────────
WP.LearningBehavior.S1=PROCESS(data1, y="WP.LearningBehaviorV", x="W.X", mods="BA.PersonalControlV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X*BA.PersonalControlV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────
##                            (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ─────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.648 ***                 4.809 ***            
##                              (0.111)                   (0.361)               
## W.X                          -0.056                    -0.236                
##                              (0.093)                   (0.311)               
## BA.PersonalControlV                                    -0.285 ***            
##                                                        (0.085)               
## W.X:BA.PersonalControlV                                 0.044                
##                                                        (0.073)               
## ─────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.000                     0.043                
## Conditional R^2               0.466                     0.467                
## AIC                        2385.192                  2383.672                
## BIC                        2412.181                  2419.659                
## Num. obs.                   664                       664                    
## Num. groups: B.ID           166                       166                    
## Var: B.ID (Intercept)         1.343                     1.219                
## Var: B.ID W.X                 0.008                     0.006                
## Cov: B.ID (Intercept) W.X    -0.103                    -0.084                
## Var: Residual                 1.426                     1.429                
## ─────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X * BA.PersonalControlV  0.37   1 487  .543    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.LearningBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.794 (- SD)          -0.112 (0.132) -0.854  .394     [-0.370, 0.145]
##  4.072 (Mean)          -0.056 (0.093) -0.599  .549     [-0.238, 0.126]
##  5.350 (+ SD)           0.001 (0.132)  0.006  .995     [-0.257, 0.259]
## ──────────────────────────────────────────────────────────────────────
WP.SocialLearning.S1=PROCESS(data1, y="WP.SocialLearningV", x="W.X", mods="BA.PersonalControlV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X*BA.PersonalControlV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────
##                            (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ─────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.759 ***               5.678 ***          
##                              (0.104)                 (0.312)             
## W.X                          -0.178 *                -0.561 *            
##                              (0.079)                 (0.265)             
## BA.PersonalControlV                                  -0.471 ***          
##                                                      (0.073)             
## W.X:BA.PersonalControlV                               0.094              
##                                                      (0.062)             
## ─────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.004                   0.136              
## Conditional R^2               0.535                   0.537              
## AIC                        2211.535                2183.811              
## BIC                        2238.525                2219.797              
## Num. obs.                   664                     664                  
## Num. groups: B.ID           166                     166                  
## Var: B.ID (Intercept)         1.282                   0.930              
## Var: B.ID W.X                 0.007                   0.001              
## Cov: B.ID (Intercept) W.X    -0.097                  -0.031              
## Var: Residual                 1.040                   1.039              
## ─────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X * BA.PersonalControlV  2.30   1 494  .130    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.794 (- SD)          -0.298 (0.112) -2.665  .008 **  [-0.518, -0.079]
##  4.072 (Mean)          -0.178 (0.079) -2.255  .025 *   [-0.334, -0.023]
##  5.350 (+ SD)          -0.058 (0.112) -0.522  .602     [-0.278,  0.161]
## ───────────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.S1=PROCESS(data1, y="WP.IndependentObservationBasedSocialLearningV", x="W.X", mods="BA.PersonalControlV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X*BA.PersonalControlV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.736 ***                                          5.381 ***                                     
##                              (0.114)                                            (0.359)                                        
## W.X                          -0.170                                             -0.284                                         
##                              (0.094)                                            (0.315)                                        
## BA.PersonalControlV                                                             -0.404 ***                                     
##                                                                                 (0.084)                                        
## W.X:BA.PersonalControlV                                                          0.028                                         
##                                                                                 (0.074)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                              0.091                                         
## Conditional R^2               0.478                                              0.479                                         
## AIC                        2410.168                                           2394.826                                         
## BIC                        2437.158                                           2430.812                                         
## Num. obs.                   664                                                664                                             
## Num. groups: B.ID           166                                                166                                             
## Var: B.ID (Intercept)         1.438                                              1.180                                         
## Var: B.ID W.X                 0.007                                              0.006                                         
## Cov: B.ID (Intercept) W.X    -0.104                                             -0.086                                         
## Var: Residual                 1.469                                              1.472                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X * BA.PersonalControlV  0.14   1 486  .706    
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.794 (- SD)          -0.206 (0.133) -1.542  .124     [-0.467, 0.056]
##  4.072 (Mean)          -0.170 (0.094) -1.804  .072 .   [-0.355, 0.015]
##  5.350 (+ SD)          -0.135 (0.133) -1.008  .314     [-0.396, 0.127]
## ──────────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.S1=PROCESS(data1, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X", mods="BA.PersonalControlV", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X*BA.PersonalControlV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   3.782 ***                                  5.975 ***                             
##                              (0.112)                                    (0.333)                                
## W.X                          -0.187 *                                   -0.838 **                              
##                              (0.091)                                    (0.303)                                
## BA.PersonalControlV                                                     -0.539 ***                             
##                                                                         (0.078)                                
## W.X:BA.PersonalControlV                                                  0.160 *                               
##                                                                         (0.071)                                
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.003                                      0.137                                 
## Conditional R^2               0.483                                      0.487                                 
## AIC                        2364.000                                   2331.634                                 
## BIC                        2390.990                                   2367.620                                 
## Num. obs.                   664                                        664                                     
## Num. groups: B.ID           166                                        166                                     
## Var: B.ID (Intercept)         1.418                                      0.964                                 
## Var: B.ID W.X                 0.018                                      0.001                                 
## Cov: B.ID (Intercept) W.X    -0.159                                     -0.037                                 
## Var: Residual                 1.365                                      1.359                                 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────
##                               F df1 df2     p    
## ─────────────────────────────────────────────────
## W.X * BA.PersonalControlV  5.09   1 493  .024 *  
## ─────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────────────
##  2.794 (- SD)          -0.391 (0.128) -3.054  .002 **  [-0.642, -0.140]
##  4.072 (Mean)          -0.187 (0.091) -2.063  .040 *   [-0.364, -0.009]
##  5.350 (+ SD)           0.018 (0.128)  0.138  .890     [-0.233,  0.269]
## ───────────────────────────────────────────────────────────────────────

7.2 Study 2

7.2.1 AI VS Control

WA.LearningFromOperationalFailure.Sb10=PROCESS(data2, y="WA.LearningFromOperationalFailureV", x="W.X10", mods="BA.PersonalControlV",covs=c("W.X01","W.X01BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X01, W.X01BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X01 + W.X01BA.PersonalControlV + W.X10*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.363 ***                               5.783 ***                          
##                                (0.109)                                 (0.335)                             
## W.X01                           0.343                                   0.157                              
##                                (0.201)                                 (0.235)                             
## W.X01BA.PersonalControlV       -0.050                                  -0.003                              
##                                (0.047)                                 (0.056)                             
## W.X10                           0.113                                   0.197                              
##                                (0.072)                                 (0.236)                             
## BA.PersonalControlV                                                    -0.359 ***                          
##                                                                        (0.081)                             
## W.X10:BA.PersonalControlV                                              -0.021                              
##                                                                        (0.057)                             
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                                   0.100                              
## Conditional R^2                 0.617                                   0.622                              
## AIC                          3025.529                                3011.245                              
## BIC                          3079.269                                3074.756                              
## Num. obs.                     978                                     978                                  
## Num. groups: B.ID             163                                     163                                  
## Var: B.ID (Intercept)           1.503                                   1.301                              
## Var: B.ID W.X10                 0.012                                   0.017                              
## Var: B.ID W.X01                 0.007                                   0.004                              
## Cov: B.ID (Intercept) W.X10    -0.134                                  -0.147                              
## Cov: B.ID (Intercept) W.X01    -0.100                                  -0.074                              
## Cov: B.ID W.X10 W.X01           0.009                                   0.008                              
## Var: Residual                   0.843                                   0.841                              
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X10 * BA.PersonalControlV  0.14   1 694  .708    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.140 (0.103) 1.364  .173     [-0.061, 0.341]
##  3.954 (Mean)           0.113 (0.073) 1.554  .121     [-0.029, 0.255]
##  5.230 (+ SD)           0.086 (0.103) 0.833  .405     [-0.116, 0.287]
## ─────────────────────────────────────────────────────────────────────
WA.LearningFromErrors.Sb10=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X10", mods="BA.PersonalControlV",covs=c("W.X01","W.X01BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X01, W.X01BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X01 + W.X01BA.PersonalControlV + W.X10*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.163 ***                   5.433 ***              
##                                (0.118)                     (0.372)                 
## W.X01                           0.078                      -0.007                  
##                                (0.203)                     (0.228)                 
## W.X01BA.PersonalControlV       -0.014                       0.007                  
##                                (0.048)                     (0.055)                 
## W.X10                           0.038                       0.098                  
##                                (0.068)                     (0.222)                 
## BA.PersonalControlV                                        -0.321 ***              
##                                                            (0.090)                 
## W.X10:BA.PersonalControlV                                  -0.015                  
##                                                            (0.054)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                       0.064                  
## Conditional R^2                 0.716                       0.718                  
## AIC                          2996.412                    2992.672                  
## BIC                          3050.153                    3056.184                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.906                       1.749                  
## Var: B.ID W.X10                 0.011                       0.011                  
## Var: B.ID W.X01                 0.048                       0.046                  
## Cov: B.ID (Intercept) W.X10    -0.055                      -0.063                  
## Cov: B.ID (Intercept) W.X01    -0.002                       0.009                  
## Cov: B.ID W.X10 W.X01          -0.021                      -0.021                  
## Var: Residual                   0.748                       0.749                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X10 * BA.PersonalControlV  0.08   1 497  .777    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.LearningFromErrorsV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.057 (0.097) 0.590  .556     [-0.132, 0.246]
##  3.954 (Mean)           0.038 (0.068) 0.550  .582     [-0.096, 0.171]
##  5.230 (+ SD)           0.018 (0.097) 0.188  .851     [-0.171, 0.207]
## ─────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.Sb10=PROCESS(data2, y="WA.ThrivingInLearningV", x="W.X10", mods="BA.PersonalControlV",covs=c("W.X01","W.X01BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X01, W.X01BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X01 + W.X01BA.PersonalControlV + W.X10*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.291 ***                   5.627 ***              
##                                (0.109)                     (0.340)                 
## W.X01                          -0.054                      -0.324                  
##                                (0.196)                     (0.226)                 
## W.X01BA.PersonalControlV        0.016                       0.084                  
##                                (0.046)                     (0.054)                 
## W.X10                          -0.026                      -0.095                  
##                                (0.061)                     (0.200)                 
## BA.PersonalControlV                                        -0.338 ***              
##                                                            (0.082)                 
## W.X10:BA.PersonalControlV                                   0.017                  
##                                                            (0.048)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.000                       0.070                  
## Conditional R^2                 0.717                       0.717                  
## AIC                          2828.746                    2822.996                  
## BIC                          2882.486                    2886.508                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.645                       1.468                  
## Var: B.ID W.X10                 0.001                       0.001                  
## Var: B.ID W.X01                 0.173                       0.169                  
## Cov: B.ID (Intercept) W.X10    -0.037                      -0.029                  
## Cov: B.ID (Intercept) W.X01    -0.187                      -0.153                  
## Cov: B.ID W.X10 W.X01           0.004                       0.007                  
## Var: Residual                   0.613                       0.614                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X10 * BA.PersonalControlV  0.13   1 645  .717    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.ThrivingInLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.678 (- SD)          -0.049 (0.087) -0.560  .576     [-0.219, 0.122]
##  3.954 (Mean)          -0.026 (0.061) -0.430  .668     [-0.147, 0.094]
##  5.230 (+ SD)          -0.004 (0.087) -0.047  .962     [-0.174, 0.166]
## ──────────────────────────────────────────────────────────────────────
WP.LearningBehavior.Sb10=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X10", mods="BA.PersonalControlV",covs=c("W.X01","W.X01BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X01, W.X01BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X01 + W.X01BA.PersonalControlV + W.X10*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────
##                              (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ───────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.549 ***                 5.127 ***            
##                                (0.123)                   (0.379)               
## W.X01                           0.137                    -0.047                
##                                (0.198)                   (0.227)               
## W.X01BA.PersonalControlV       -0.030                     0.016                
##                                (0.047)                   (0.055)               
## W.X10                           0.124                     0.145                
##                                (0.068)                   (0.223)               
## BA.PersonalControlV                                      -0.399 ***            
##                                                          (0.091)               
## W.X10:BA.PersonalControlV                                -0.005                
##                                                          (0.054)               
## ───────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                     0.092                
## Conditional R^2                 0.728                     0.730                
## AIC                          3010.642                  3001.437                
## BIC                          3064.382                  3064.949                
## Num. obs.                     978                       978                    
## Num. groups: B.ID             163                       163                    
## Var: B.ID (Intercept)           2.076                     1.827                
## Var: B.ID W.X10                 0.000                     0.002                
## Var: B.ID W.X01                 0.043                     0.035                
## Cov: B.ID (Intercept) W.X10    -0.009                    -0.011                
## Cov: B.ID (Intercept) W.X01    -0.091                    -0.058                
## Cov: B.ID W.X10 W.X01           0.000                    -0.008                
## Var: Residual                   0.759                     0.759                
## ───────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X10 * BA.PersonalControlV  0.01   1 645  .921    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.LearningBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.131 (0.097) 1.356  .176     [-0.058, 0.320]
##  3.954 (Mean)           0.124 (0.068) 1.819  .069 .   [-0.010, 0.258]
##  5.230 (+ SD)           0.117 (0.097) 1.215  .225     [-0.072, 0.307]
## ─────────────────────────────────────────────────────────────────────
WP.SocialLearning.Sb10=PROCESS(data2, y="WP.SocialLearningV", x="W.X10", mods="BA.PersonalControlV",covs=c("W.X01","W.X01BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)##
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X01, W.X01BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X01 + W.X01BA.PersonalControlV + W.X10*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────
##                              (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ───────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.656 ***               5.289 ***          
##                                (0.109)                 (0.330)             
## W.X01                           0.540 **                0.451 *            
##                                (0.195)                 (0.222)             
## W.X01BA.PersonalControlV       -0.118 *                -0.096              
##                                (0.046)                 (0.053)             
## W.X10                           0.115                   0.603 **           
##                                (0.069)                 (0.224)             
## BA.PersonalControlV                                    -0.413 ***          
##                                                        (0.079)             
## W.X10:BA.PersonalControlV                              -0.123 *            
##                                                        (0.054)             
## ───────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.004                   0.165              
## Conditional R^2                 0.683                   0.691              
## AIC                          2960.470                2929.806              
## BIC                          3014.211                2993.317              
## Num. obs.                     978                     978                  
## Num. groups: B.ID             163                     163                  
## Var: B.ID (Intercept)           1.573                   1.305              
## Var: B.ID W.X10                 0.046                   0.033              
## Var: B.ID W.X01                 0.023                   0.021              
## Cov: B.ID (Intercept) W.X10     0.036                  -0.053              
## Cov: B.ID (Intercept) W.X01    -0.067                  -0.054              
## Cov: B.ID W.X10 W.X01          -0.032                  -0.022              
## Var: Residual                   0.736                   0.736              
## ───────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X10 * BA.PersonalControlV  5.24   1 410  .023 *  
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.272 (0.097)  2.804  .005 **  [ 0.082, 0.463]
##  3.954 (Mean)           0.115 (0.069)  1.674  .095 .   [-0.020, 0.250]
##  5.230 (+ SD)          -0.042 (0.097) -0.436  .663     [-0.233, 0.148]
## ──────────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.Sb10=PROCESS(data2, y="WP.IndependentObservationBasedSocialLearningV", x="W.X10", mods="BA.PersonalControlV",covs=c("W.X01","W.X01BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)#
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X01, W.X01BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X01 + W.X01BA.PersonalControlV + W.X10*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.695 ***                                          5.423 ***                                     
##                                (0.121)                                            (0.370)                                        
## W.X01                           0.244                                              0.286                                         
##                                (0.226)                                            (0.260)                                        
## W.X01BA.PersonalControlV       -0.042                                             -0.052                                         
##                                (0.053)                                            (0.063)                                        
## W.X10                           0.172 *                                            0.840 **                                      
##                                (0.082)                                            (0.262)                                        
## BA.PersonalControlV                                                               -0.437 ***                                     
##                                                                                   (0.089)                                        
## W.X10:BA.PersonalControlV                                                         -0.169 **                                      
##                                                                                   (0.063)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                                              0.146                                         
## Conditional R^2                 0.650                                              0.653                                         
## AIC                          3258.500                                           3224.999                                         
## BIC                          3312.241                                           3288.511                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           1.882                                              1.583                                         
## Var: B.ID W.X10                 0.047                                              0.014                                         
## Var: B.ID W.X01                 0.001                                              0.000                                         
## Cov: B.ID (Intercept) W.X10     0.035                                             -0.093                                         
## Cov: B.ID (Intercept) W.X01    -0.005                                             -0.016                                         
## Cov: B.ID W.X10 W.X01          -0.006                                             -0.000                                         
## Var: Residual                   1.037                                              1.037                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X10 * BA.PersonalControlV  7.20   1 350  .008 ** 
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.387 (0.114)  3.410 <.001 *** [ 0.165, 0.610]
##  3.954 (Mean)           0.172 (0.080)  2.139  .033 *   [ 0.014, 0.329]
##  5.230 (+ SD)          -0.044 (0.114) -0.385  .700     [-0.266, 0.179]
## ──────────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.Sb10=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X10", mods="BA.PersonalControlV",covs=c("W.X01","W.X01BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)##
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X01, W.X01BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X01 + W.X01BA.PersonalControlV + W.X10*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.617 ***                                  5.154 ***                             
##                                (0.111)                                    (0.341)                                
## W.X01                           0.828 ***                                  0.617 *                               
##                                (0.234)                                    (0.267)                                
## W.X01BA.PersonalControlV       -0.192 ***                                 -0.139 *                               
##                                (0.055)                                    (0.064)                                
## W.X10                           0.058                                      0.366                                 
##                                (0.082)                                    (0.268)                                
## BA.PersonalControlV                                                       -0.389 ***                             
##                                                                           (0.082)                                
## W.X10:BA.PersonalControlV                                                 -0.078                                 
##                                                                           (0.064)                                
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.008                                      0.130                                 
## Conditional R^2                 0.599                                      0.610                                 
## AIC                          3254.563                                   3236.374                                 
## BIC                          3308.304                                   3299.886                                 
## Num. obs.                     978                                        978                                     
## Num. groups: B.ID             163                                        163                                     
## Var: B.ID (Intercept)           1.495                                      1.257                                 
## Var: B.ID W.X10                 0.051                                      0.043                                 
## Var: B.ID W.X01                 0.045                                      0.038                                 
## Cov: B.ID (Intercept) W.X10     0.092                                      0.041                                 
## Cov: B.ID (Intercept) W.X01    -0.046                                     -0.013                                 
## Cov: B.ID W.X10 W.X01          -0.047                                     -0.040                                 
## Var: Residual                   1.055                                      1.056                                 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X10 * BA.PersonalControlV  1.46   1 283  .228    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.158 (0.116)  1.356  .176     [-0.070, 0.385]
##  3.954 (Mean)           0.058 (0.082)  0.710  .479     [-0.103, 0.219]
##  5.230 (+ SD)          -0.041 (0.116) -0.353  .724     [-0.269, 0.187]
## ──────────────────────────────────────────────────────────────────────

7.2.2 AI VS Self

WA.LearningFromOperationalFailure.Sb01=PROCESS(data2, y="WA.LearningFromOperationalFailureV", x="W.X01", mods="BA.PersonalControlV",covs=c("W.X10","W.X10BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromOperationalFailureV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X10, W.X10BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromOperationalFailureV ~ W.X10 + W.X10BA.PersonalControlV + W.X01*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromOperationalFailureV  (2) WA.LearningFromOperationalFailureV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.363 ***                               5.783 ***                          
##                                (0.109)                                 (0.335)                             
## W.X10                           0.505 *                                 0.197                              
##                                (0.197)                                 (0.236)                             
## W.X10BA.PersonalControlV       -0.099 *                                -0.021                              
##                                (0.046)                                 (0.057)                             
## W.X01                           0.146 *                                 0.157                              
##                                (0.072)                                 (0.235)                             
## BA.PersonalControlV                                                    -0.359 ***                          
##                                                                        (0.081)                             
## W.X01:BA.PersonalControlV                                              -0.003                              
##                                                                        (0.056)                             
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.004                                   0.100                              
## Conditional R^2                 0.615                                   0.622                              
## AIC                          3022.547                                3011.245                              
## BIC                          3076.288                                3074.756                              
## Num. obs.                     978                                     978                                  
## Num. groups: B.ID             163                                     163                                  
## Var: B.ID (Intercept)           1.502                                   1.301                              
## Var: B.ID W.X10                 0.024                                   0.017                              
## Var: B.ID W.X01                 0.003                                   0.004                              
## Cov: B.ID (Intercept) W.X10    -0.190                                  -0.147                              
## Cov: B.ID (Intercept) W.X01    -0.072                                  -0.074                              
## Cov: B.ID W.X10 W.X01           0.009                                   0.008                              
## Var: Residual                   0.841                                   0.841                              
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromOperationalFailureV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X01 * BA.PersonalControlV  0.00   1 777  .958    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromOperationalFailureV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.149 (0.102) 1.467  .143     [-0.050, 0.349]
##  3.954 (Mean)           0.146 (0.072) 2.023  .043 *   [ 0.005, 0.287]
##  5.230 (+ SD)           0.142 (0.102) 1.393  .164     [-0.058, 0.342]
## ─────────────────────────────────────────────────────────────────────
WA.LearningFromErrors.Sb01=PROCESS(data2, y="WA.LearningFromErrorsV", x="W.X01", mods="BA.PersonalControlV",covs=c("W.X10","W.X10BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.LearningFromErrorsV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X10, W.X10BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.LearningFromErrorsV ~ W.X10 + W.X10BA.PersonalControlV + W.X01*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.LearningFromErrorsV  (2) WA.LearningFromErrorsV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.163 ***                   5.433 ***              
##                                (0.118)                     (0.372)                 
## W.X10                           0.283                       0.098                  
##                                (0.191)                     (0.222)                 
## W.X10BA.PersonalControlV       -0.062                      -0.015                  
##                                (0.045)                     (0.054)                 
## W.X01                           0.022                      -0.007                  
##                                (0.071)                     (0.228)                 
## BA.PersonalControlV                                        -0.321 ***              
##                                                            (0.090)                 
## W.X01:BA.PersonalControlV                                   0.007                  
##                                                            (0.055)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                       0.064                  
## Conditional R^2                 0.713                       0.718                  
## AIC                          2995.234                    2992.672                  
## BIC                          3048.974                    3056.184                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.909                       1.749                  
## Var: B.ID W.X10                 0.004                       0.011                  
## Var: B.ID W.X01                 0.058                       0.046                  
## Cov: B.ID (Intercept) W.X10    -0.088                      -0.063                  
## Cov: B.ID (Intercept) W.X01    -0.005                       0.008                  
## Cov: B.ID W.X10 W.X01           0.000                      -0.021                  
## Var: Residual                   0.753                       0.749                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.LearningFromErrorsV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X01 * BA.PersonalControlV  0.02   1 262  .893    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.LearningFromErrorsV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.013 (0.099) 0.130  .897     [-0.181, 0.206]
##  3.954 (Mean)           0.022 (0.070) 0.318  .750     [-0.115, 0.159]
##  5.230 (+ SD)           0.032 (0.099) 0.320  .749     [-0.162, 0.225]
## ─────────────────────────────────────────────────────────────────────
WA.ThrivingInLearning.Sb01=PROCESS(data2, y="WA.ThrivingInLearningV", x="W.X01", mods="BA.PersonalControlV",covs=c("W.X10","W.X10BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingInLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X10, W.X10BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingInLearningV ~ W.X10 + W.X10BA.PersonalControlV + W.X01*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                              (1) WA.ThrivingInLearningV  (2) WA.ThrivingInLearningV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     4.291 ***                   5.627 ***              
##                                (0.109)                     (0.340)                 
## W.X10                           0.151                      -0.095                  
##                                (0.178)                     (0.200)                 
## W.X10BA.PersonalControlV       -0.045                       0.017                  
##                                (0.042)                     (0.048)                 
## W.X01                           0.009                      -0.324                  
##                                (0.070)                     (0.226)                 
## BA.PersonalControlV                                        -0.338 ***              
##                                                            (0.082)                 
## W.X01:BA.PersonalControlV                                   0.084                  
##                                                            (0.054)                 
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.001                       0.070                  
## Conditional R^2                 0.714                       0.717                  
## AIC                          2827.986                    2822.996                  
## BIC                          2881.727                    2886.508                  
## Num. obs.                     978                         978                      
## Num. groups: B.ID             163                         163                      
## Var: B.ID (Intercept)           1.642                       1.468                  
## Var: B.ID W.X10                 0.002                       0.001                  
## Var: B.ID W.X01                 0.173                       0.169                  
## Cov: B.ID (Intercept) W.X10    -0.058                      -0.029                  
## Cov: B.ID (Intercept) W.X01    -0.195                      -0.153                  
## Cov: B.ID W.X10 W.X01           0.011                       0.007                  
## Var: Residual                   0.615                       0.614                  
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingInLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X01 * BA.PersonalControlV  2.40   1 191  .123    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.ThrivingInLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.678 (- SD)          -0.099 (0.098) -1.008  .315     [-0.291, 0.093]
##  3.954 (Mean)           0.009 (0.069)  0.124  .902     [-0.127, 0.144]
##  5.230 (+ SD)           0.116 (0.098)  1.183  .238     [-0.076, 0.308]
## ──────────────────────────────────────────────────────────────────────
WP.LearningBehavior.Sb01=PROCESS(data2, y="WP.LearningBehaviorV", x="W.X01", mods="BA.PersonalControlV",covs=c("W.X10","W.X10BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.LearningBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X10, W.X10BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.LearningBehaviorV ~ W.X10 + W.X10BA.PersonalControlV + W.X01*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────
##                              (1) WP.LearningBehaviorV  (2) WP.LearningBehaviorV
## ───────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.549 ***                 5.127 ***            
##                                (0.123)                   (0.379)               
## W.X10                           0.318                     0.145                
##                                (0.194)                   (0.223)               
## W.X10BA.PersonalControlV       -0.049                    -0.005                
##                                (0.046)                   (0.054)               
## W.X01                           0.017                    -0.047                
##                                (0.070)                   (0.227)               
## BA.PersonalControlV                                      -0.399 ***            
##                                                          (0.091)               
## W.X01:BA.PersonalControlV                                 0.016                
##                                                          (0.055)               
## ───────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                     0.092                
## Conditional R^2                 0.726                     0.730                
## AIC                          3010.030                  3001.437                
## BIC                          3063.771                  3064.949                
## Num. obs.                     978                       978                    
## Num. groups: B.ID             163                       163                    
## Var: B.ID (Intercept)           2.075                     1.827                
## Var: B.ID W.X10                 0.001                     0.002                
## Var: B.ID W.X01                 0.036                     0.035                
## Cov: B.ID (Intercept) W.X10    -0.038                    -0.011                
## Cov: B.ID (Intercept) W.X01    -0.070                    -0.058                
## Cov: B.ID W.X10 W.X01           0.001                    -0.008                
## Var: Residual                   0.761                     0.759                
## ───────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.LearningBehaviorV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X01 * BA.PersonalControlV  0.09   1 306  .768    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.LearningBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.678 (- SD)          -0.004 (0.099) -0.038  .970     [-0.198, 0.190]
##  3.954 (Mean)           0.017 (0.070)  0.241  .810     [-0.120, 0.154]
##  5.230 (+ SD)           0.037 (0.099)  0.378  .705     [-0.157, 0.232]
## ──────────────────────────────────────────────────────────────────────
WP.SocialLearning.Sb01=PROCESS(data2, y="WP.SocialLearningV", x="W.X01", mods="BA.PersonalControlV",covs=c("W.X10","W.X10BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X10, W.X10BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SocialLearningV ~ W.X10 + W.X10BA.PersonalControlV + W.X01*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────
##                              (1) WP.SocialLearningV  (2) WP.SocialLearningV
## ───────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.656 ***               5.289 ***          
##                                (0.109)                 (0.330)             
## W.X10                           0.724 ***               0.603 **           
##                                (0.197)                 (0.224)             
## W.X10BA.PersonalControlV       -0.154 ***              -0.123 *            
##                                (0.047)                 (0.054)             
## W.X01                           0.073                   0.451 *            
##                                (0.068)                 (0.222)             
## BA.PersonalControlV                                    -0.413 ***          
##                                                        (0.079)             
## W.X01:BA.PersonalControlV                              -0.096              
##                                                        (0.053)             
## ───────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.007                   0.165              
## Conditional R^2                 0.681                   0.691              
## AIC                          2957.005                2929.806              
## BIC                          3010.746                2993.317              
## Num. obs.                     978                     978                  
## Num. groups: B.ID             163                     163                  
## Var: B.ID (Intercept)           1.574                   1.305              
## Var: B.ID W.X10                 0.037                   0.033              
## Var: B.ID W.X01                 0.025                   0.021              
## Cov: B.ID (Intercept) W.X10    -0.073                  -0.053              
## Cov: B.ID (Intercept) W.X01     0.015                  -0.054              
## Cov: B.ID W.X10 W.X01          -0.030                  -0.022              
## Var: Residual                   0.736                   0.736              
## ───────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SocialLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X01 * BA.PersonalControlV  3.21   1 499  .074 .  
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.195 (0.096)  2.022  .044 *   [ 0.006, 0.384]
##  3.954 (Mean)           0.073 (0.068)  1.069  .286     [-0.061, 0.206]
##  5.230 (+ SD)          -0.049 (0.096) -0.511  .610     [-0.238, 0.140]
## ──────────────────────────────────────────────────────────────────────
WP.IndependentObservationBasedSocialLearning.Sb01=PROCESS(data2, y="WP.IndependentObservationBasedSocialLearningV", x="W.X01", mods="BA.PersonalControlV",covs=c("W.X10","W.X10BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.IndependentObservationBasedSocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X10, W.X10BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.IndependentObservationBasedSocialLearningV ~ W.X10 + W.X10BA.PersonalControlV + W.X01*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.IndependentObservationBasedSocialLearningV  (2) WP.IndependentObservationBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.695 ***                                          5.423 ***                                     
##                                (0.121)                                            (0.370)                                        
## W.X10                           1.082 ***                                          0.840 **                                      
##                                (0.222)                                            (0.262)                                        
## W.X10BA.PersonalControlV       -0.230 ***                                         -0.169 **                                      
##                                (0.052)                                            (0.063)                                        
## W.X01                           0.078                                              0.286                                         
##                                (0.080)                                            (0.260)                                        
## BA.PersonalControlV                                                               -0.437 ***                                     
##                                                                                   (0.089)                                        
## W.X01:BA.PersonalControlV                                                         -0.052                                         
##                                                                                   (0.063)                                        
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.012                                              0.146                                         
## Conditional R^2                 0.641                                              0.653                                         
## AIC                          3243.509                                           3224.999                                         
## BIC                          3297.250                                           3288.511                                         
## Num. obs.                     978                                                978                                             
## Num. groups: B.ID             163                                                163                                             
## Var: B.ID (Intercept)           1.885                                              1.583                                         
## Var: B.ID W.X10                 0.024                                              0.014                                         
## Var: B.ID W.X01                 0.001                                              0.000                                         
## Cov: B.ID (Intercept) W.X10    -0.137                                             -0.093                                         
## Cov: B.ID (Intercept) W.X01     0.021                                             -0.016                                         
## Cov: B.ID W.X10 W.X01          -0.004                                             -0.000                                         
## Var: Residual                   1.037                                              1.037                                         
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.IndependentObservationBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X01 * BA.PersonalControlV  0.70   1 667  .402    
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.IndependentObservationBasedSocialLearningV" (Y)
## ─────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.145 (0.113) 1.286  .199     [-0.076, 0.366]
##  3.954 (Mean)           0.078 (0.080) 0.980  .327     [-0.078, 0.235]
##  5.230 (+ SD)           0.011 (0.113) 0.100  .921     [-0.210, 0.232]
## ─────────────────────────────────────────────────────────────────────
WP.AdviceThinkingBasedSocialLearning.Sb01=PROCESS(data2, y="WP.AdviceThinkingBasedSocialLearningV", x="W.X01", mods="BA.PersonalControlV",covs=c("W.X10","W.X10BA.PersonalControlV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.AdviceThinkingBasedSocialLearningV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.PersonalControlV
## - Covariates (C) : W.X10, W.X10BA.PersonalControlV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.AdviceThinkingBasedSocialLearningV ~ W.X10 + W.X10BA.PersonalControlV + W.X01*BA.PersonalControlV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                              (1) WP.AdviceThinkingBasedSocialLearningV  (2) WP.AdviceThinkingBasedSocialLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                     3.617 ***                                  5.154 ***                             
##                                (0.111)                                    (0.341)                                
## W.X10                           0.414                                      0.366                                 
##                                (0.238)                                    (0.268)                                
## W.X10BA.PersonalControlV       -0.090                                     -0.078                                 
##                                (0.056)                                    (0.064)                                
## W.X01                           0.067                                      0.617 *                               
##                                (0.083)                                    (0.267)                                
## BA.PersonalControlV                                                       -0.389 ***                             
##                                                                           (0.082)                                
## W.X01:BA.PersonalControlV                                                 -0.139 *                               
##                                                                           (0.064)                                
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                    0.002                                      0.130                                 
## Conditional R^2                 0.604                                      0.610                                 
## AIC                          3262.344                                   3236.374                                 
## BIC                          3316.085                                   3299.886                                 
## Num. obs.                     978                                        978                                     
## Num. groups: B.ID             163                                        163                                     
## Var: B.ID (Intercept)           1.493                                      1.257                                 
## Var: B.ID W.X10                 0.043                                      0.043                                 
## Var: B.ID W.X01                 0.061                                      0.038                                 
## Cov: B.ID (Intercept) W.X10     0.037                                      0.041                                 
## Cov: B.ID (Intercept) W.X01     0.079                                     -0.013                                 
## Cov: B.ID W.X10 W.X01          -0.047                                     -0.040                                 
## Var: Residual                   1.057                                      1.056                                 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ───────────────────────────────────────────────────
##                                 F df1 df2     p    
## ───────────────────────────────────────────────────
## W.X01 * BA.PersonalControlV  4.67   1 297  .031 *  
## ───────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.AdviceThinkingBasedSocialLearningV" (Y)
## ──────────────────────────────────────────────────────────────────────
##  "BA.PersonalControlV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────
##  2.678 (- SD)           0.245 (0.116)  2.111  .036 *   [ 0.017, 0.472]
##  3.954 (Mean)           0.067 (0.082)  0.824  .411     [-0.093, 0.228]
##  5.230 (+ SD)          -0.110 (0.116) -0.946  .345     [-0.337, 0.118]
## ──────────────────────────────────────────────────────────────────────

8 ONE COMPLETE STUDY

8.1 Study 1

S1=PROCESS(data1, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X", mods="BA.AIOnlineCommunicationSkillsV", cluster ="B.ID", hlm.re.y ="(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X*BA.AIOnlineCommunicationSkillsV + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                      (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                             3.449 ***                                     2.447 ***                                
##                                        (0.100)                                       (0.390)                                   
## W.X                                    -0.121                                         0.530                                    
##                                        (0.082)                                       (0.321)                                   
## BA.AIOnlineCommunicationSkillsV                                                       0.235 **                                 
##                                                                                      (0.089)                                   
## W.X:BA.AIOnlineCommunicationSkillsV                                                  -0.153 *                                  
##                                                                                      (0.073)                                   
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                            0.002                                         0.019                                    
## Conditional R^2                         0.496                                         0.502                                    
## AIC                                  2229.463                                      2231.960                                    
## BIC                                  2256.453                                      2267.947                                    
## Num. obs.                             664                                           664                                        
## Num. groups: B.ID                     166                                           166                                        
## Var: B.ID (Intercept)                   1.119                                         1.068                                    
## Var: B.ID W.X                           0.001                                         0.000                                    
## Cov: B.ID (Intercept) W.X              -0.037                                        -0.008                                    
## Var: Residual                           1.101                                         1.094                                    
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 664 (20 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## W.X * BA.AIOnlineCommunicationSkillsV  4.39   1 496  .037 *  
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p             [95% CI]
## ───────────────────────────────────────────────────────────────────────────────────
##  3.146 (- SD)                       0.049 (0.115)  0.428  .669     [-0.176,  0.274]
##  4.260 (Mean)                      -0.121 (0.081) -1.491  .137     [-0.280,  0.038]
##  5.374 (+ SD)                      -0.291 (0.115) -2.536  .012 *   [-0.516, -0.066]
## ───────────────────────────────────────────────────────────────────────────────────
interact_plot(S1$model.y, W.X, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus")+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

8.2 Study 2

8.2.1 X -> Y: Three groups comparisions for

8.2.1.1 Treating W.X as moderator

data2$W.X=as.factor(data2$W.X)
S2=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="BA.AIOnlineCommunicationSkillsV", mods="W.X", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : BA.AIOnlineCommunicationSkillsV
## -  Mediators (M) : -
## - Moderators (W) : W.X
## - Covariates (C) : -
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ BA.AIOnlineCommunicationSkillsV*W.X + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                       (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              1.956 ***                                     1.511 ***                                
##                                         (0.349)                                       (0.375)                                   
## BA.AIOnlineCommunicationSkillsV          0.348 ***                                     0.447 ***                                
##                                         (0.079)                                       (0.085)                                   
## W.X1                                                                                   0.692 **                                 
##                                                                                       (0.259)                                   
## W.X2                                                                                   0.699 **                                 
##                                                                                       (0.260)                                   
## BA.AIOnlineCommunicationSkillsV:W.X1                                                  -0.154 **                                 
##                                                                                       (0.059)                                   
## BA.AIOnlineCommunicationSkillsV:W.X2                                                  -0.155 **                                 
##                                                                                       (0.059)                                   
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.076                                         0.077                                    
## Conditional R^2                          0.683                                         0.687                                    
## AIC                                   2931.920                                      2944.105                                    
## BIC                                   2975.890                                      3007.617                                    
## Num. obs.                              978                                           978                                        
## Num. groups: B.ID                      163                                           163                                        
## Var: B.ID (Intercept)                    1.291                                         1.294                                    
## Var: B.ID W.X1                           0.078                                         0.084                                    
## Var: B.ID W.X2                           0.084                                         0.090                                    
## Cov: B.ID (Intercept) W.X1               0.039                                         0.038                                    
## Cov: B.ID (Intercept) W.X2              -0.011                                        -0.012                                    
## Cov: B.ID W.X1 W.X2                     -0.081                                        -0.087                                    
## Var: Residual                            0.712                                         0.702                                    
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## BA.AIOnlineCommunicationSkillsV * W.X  5.15   2 257  .006 ** 
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "BA.AIOnlineCommunicationSkillsV" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ────────────────────────────────────────────────────
##  "W.X" Effect    S.E.     t     p           [95% CI]
## ────────────────────────────────────────────────────
##  0      0.447 (0.085) 5.263 <.001 *** [0.280, 0.613]
##  1      0.293 (0.089) 3.297  .001 **  [0.119, 0.467]
##  2      0.292 (0.087) 3.370 <.001 *** [0.122, 0.461]
## ────────────────────────────────────────────────────

8.2.1.2 Treating W.X as X

S2.i=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X10", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X01","W.X01BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X01, W.X01BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.413 ***                                     1.511 ***                                
##                                          (0.108)                                       (0.375)                                   
## W.X01                                     0.212                                         0.699 **                                 
##                                          (0.239)                                       (0.260)                                   
## W.X01BA.AIOnlineCommunicationSkillsV     -0.040                                        -0.155 **                                 
##                                          (0.054)                                       (0.059)                                   
## W.X10                                     0.038                                         0.692 **                                 
##                                          (0.070)                                       (0.259)                                   
## BA.AIOnlineCommunicationSkillsV                                                         0.447 ***                                
##                                                                                        (0.085)                                   
## W.X10:BA.AIOnlineCommunicationSkillsV                                                  -0.154 **                                 
##                                                                                        (0.059)                                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.000                                         0.077                                    
## Conditional R^2                           0.685                                         0.687                                    
## AIC                                    2960.196                                      2944.105                                    
## BIC                                    3013.937                                      3007.617                                    
## Num. obs.                               978                                           978                                        
## Num. groups: B.ID                       163                                           163                                        
## Var: B.ID (Intercept)                     1.552                                         1.294                                    
## Var: B.ID W.X10                           0.087                                         0.084                                    
## Var: B.ID W.X01                           0.087                                         0.090                                    
## Cov: B.ID (Intercept) W.X10              -0.040                                         0.038                                    
## Cov: B.ID (Intercept) W.X01              -0.066                                        -0.012                                    
## Cov: B.ID W.X10 W.X01                    -0.083                                        -0.087                                    
## Var: Residual                             0.710                                         0.702                                    
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  6.84   1 340  .009 ** 
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.220 (0.098)  2.237  .026 *   [ 0.027, 0.412]
##  4.260 (Mean)                       0.038 (0.069)  0.547  .584     [-0.098, 0.174]
##  5.444 (+ SD)                      -0.144 (0.098) -1.463  .144     [-0.336, 0.049]
## ──────────────────────────────────────────────────────────────────────────────────
S2.ii=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X01", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X10","W.X10BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X10, W.X10BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.413 ***                                     1.511 ***                                
##                                          (0.108)                                       (0.375)                                   
## W.X10                                     0.274                                         0.692 **                                 
##                                          (0.241)                                       (0.259)                                   
## W.X10BA.AIOnlineCommunicationSkillsV     -0.055                                        -0.154 **                                 
##                                          (0.054)                                       (0.059)                                   
## W.X01                                     0.039                                         0.699 **                                 
##                                          (0.070)                                       (0.260)                                   
## BA.AIOnlineCommunicationSkillsV                                                         0.447 ***                                
##                                                                                        (0.085)                                   
## W.X01:BA.AIOnlineCommunicationSkillsV                                                  -0.155 **                                 
##                                                                                        (0.059)                                   
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.001                                         0.077                                    
## Conditional R^2                           0.686                                         0.687                                    
## AIC                                    2959.761                                      2944.105                                    
## BIC                                    3013.501                                      3007.617                                    
## Num. obs.                               978                                           978                                        
## Num. groups: B.ID                       163                                           163                                        
## Var: B.ID (Intercept)                     1.553                                         1.294                                    
## Var: B.ID W.X10                           0.079                                         0.084                                    
## Var: B.ID W.X01                           0.096                                         0.090                                    
## Cov: B.ID (Intercept) W.X10              -0.008                                         0.038                                    
## Cov: B.ID (Intercept) W.X01              -0.092                                        -0.012                                    
## Cov: B.ID W.X10 W.X01                    -0.084                                        -0.087                                    
## Var: Residual                             0.709                                         0.702                                    
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  6.92   1 329  .009 ** 
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.223 (0.099)  2.258  .025 *   [ 0.029, 0.416]
##  4.260 (Mean)                       0.039 (0.070)  0.563  .574     [-0.097, 0.176]
##  5.444 (+ SD)                      -0.144 (0.099) -1.462  .145     [-0.337, 0.049]
## ──────────────────────────────────────────────────────────────────────────────────
print_table(S2.ii$model.y)
## ────────────────────────────────────────────────────────────────────────────────
##                                        Estimate    S.E.      df      t     p    
## ────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               1.511 (0.375) 164.766  4.027 <.001 ***
## W.X10                                     0.692 (0.259) 339.510  2.667  .008 ** 
## W.X10BA.AIOnlineCommunicationSkillsV     -0.154 (0.059) 339.510 -2.615  .009 ** 
## W.X01                                     0.699 (0.260) 329.378  2.685  .008 ** 
## BA.AIOnlineCommunicationSkillsV           0.447 (0.085) 164.765  5.263 <.001 ***
## W.X01:BA.AIOnlineCommunicationSkillsV    -0.155 (0.059) 329.378 -2.630  .009 ** 
## ────────────────────────────────────────────────────────────────────────────────
interact_plot(S2.i$model.y, W.X10, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S2.ii$model.y, W.X01, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

model_summary(list(S1$model.y,S2$model.y))#,S2.i$model.y,S2.ii$model.y))
## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                       (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              2.447 ***                                     1.511 ***                                
##                                         (0.390)                                       (0.375)                                   
## W.X                                      0.530                                                                                  
##                                         (0.321)                                                                                 
## BA.AIOnlineCommunicationSkillsV          0.235 **                                      0.447 ***                                
##                                         (0.089)                                       (0.085)                                   
## W.X:BA.AIOnlineCommunicationSkillsV     -0.153 *                                                                                
##                                         (0.073)                                                                                 
## W.X1                                                                                   0.692 **                                 
##                                                                                       (0.259)                                   
## W.X2                                                                                   0.699 **                                 
##                                                                                       (0.260)                                   
## BA.AIOnlineCommunicationSkillsV:W.X1                                                  -0.154 **                                 
##                                                                                       (0.059)                                   
## BA.AIOnlineCommunicationSkillsV:W.X2                                                  -0.155 **                                 
##                                                                                       (0.059)                                   
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.019                                         0.077                                    
## Conditional R^2                          0.502                                         0.687                                    
## AIC                                   2231.960                                      2944.105                                    
## BIC                                   2267.947                                      3007.617                                    
## Num. obs.                              664                                           978                                        
## Num. groups: B.ID                      166                                           163                                        
## Var: B.ID (Intercept)                    1.068                                         1.294                                    
## Var: B.ID W.X                            0.000                                                                                  
## Cov: B.ID (Intercept) W.X               -0.008                                                                                  
## Var: Residual                            1.094                                         0.702                                    
## Var: B.ID W.X1                                                                         0.084                                    
## Var: B.ID W.X2                                                                         0.090                                    
## Cov: B.ID (Intercept) W.X1                                                             0.038                                    
## Cov: B.ID (Intercept) W.X2                                                            -0.012                                    
## Cov: B.ID W.X1 W.X2                                                                   -0.087                                    
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

8.2.2 X -> M: Three groups comparisions

8.2.2.1 WA.AffectiveRuminationV

S2mA.i=PROCESS(data2, y="WA.AffectiveRuminationV", x="W.X10", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X01","W.X01BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.AffectiveRuminationV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X01, W.X01BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.AffectiveRuminationV ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WA.AffectiveRuminationV  (2) WA.AffectiveRuminationV
## ───────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.731 ***                    2.810 ***               
##                                          (0.114)                      (0.421)                  
## W.X01                                     0.237                        0.537 *                 
##                                          (0.241)                      (0.269)                  
## W.X01BA.AIOnlineCommunicationSkillsV     -0.043                       -0.113                   
##                                          (0.054)                      (0.061)                  
## W.X10                                     0.093                        0.632 *                 
##                                          (0.071)                      (0.266)                  
## BA.AIOnlineCommunicationSkillsV                                        0.216 *                 
##                                                                       (0.095)                  
## W.X10:BA.AIOnlineCommunicationSkillsV                                 -0.127 *                 
##                                                                       (0.060)                  
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.001                        0.013                   
## Conditional R^2                           0.681                        0.683                   
## AIC                                    3044.495                     3048.114                   
## BIC                                    3098.236                     3111.626                   
## Num. obs.                               978                          978                       
## Num. groups: B.ID                       163                          163                       
## Var: B.ID (Intercept)                     1.714                        1.666                   
## Var: B.ID W.X10                           0.030                        0.027                   
## Var: B.ID W.X01                           0.042                        0.045                   
## Cov: B.ID (Intercept) W.X10              -0.053                       -0.026                   
## Cov: B.ID (Intercept) W.X01               0.015                        0.027                   
## Cov: B.ID W.X10 W.X01                    -0.035                       -0.035                   
## Var: Residual                             0.803                        0.800                   
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.AffectiveRuminationV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  4.42   1 452  .036 *  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.AffectiveRuminationV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.243 (0.101)  2.413  .016 *   [ 0.046, 0.441]
##  4.260 (Mean)                       0.093 (0.071)  1.309  .191     [-0.046, 0.233]
##  5.444 (+ SD)                      -0.057 (0.101) -0.562  .575     [-0.254, 0.141]
## ──────────────────────────────────────────────────────────────────────────────────
S2mA.ii=PROCESS(data2, y="WA.AffectiveRuminationV", x="W.X01", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X10","W.X10BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.AffectiveRuminationV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X10, W.X10BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.AffectiveRuminationV ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WA.AffectiveRuminationV  (2) WA.AffectiveRuminationV
## ───────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.731 ***                    2.810 ***               
##                                          (0.114)                      (0.421)                  
## W.X10                                     0.327                        0.632 *                 
##                                          (0.235)                      (0.266)                  
## W.X10BA.AIOnlineCommunicationSkillsV     -0.055                       -0.127 *                 
##                                          (0.053)                      (0.060)                  
## W.X01                                     0.055                        0.537 *                 
##                                          (0.072)                      (0.269)                  
## BA.AIOnlineCommunicationSkillsV                                        0.216 *                 
##                                                                       (0.095)                  
## W.X01:BA.AIOnlineCommunicationSkillsV                                 -0.113                   
##                                                                       (0.061)                  
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.001                        0.013                   
## Conditional R^2                           0.681                        0.683                   
## AIC                                    3044.095                     3048.114                   
## BIC                                    3097.835                     3111.626                   
## Num. obs.                               978                          978                       
## Num. groups: B.ID                       163                          163                       
## Var: B.ID (Intercept)                     1.715                        1.666                   
## Var: B.ID W.X10                           0.026                        0.027                   
## Var: B.ID W.X01                           0.046                        0.045                   
## Cov: B.ID (Intercept) W.X10              -0.039                       -0.026                   
## Cov: B.ID (Intercept) W.X01               0.002                        0.027                   
## Cov: B.ID W.X10 W.X01                    -0.034                       -0.035                   
## Var: Residual                             0.802                        0.800                   
## ───────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.AffectiveRuminationV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  3.47   1 367  .063 .  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.AffectiveRuminationV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.189 (0.102)  1.853  .065 .   [-0.011, 0.388]
##  4.260 (Mean)                       0.055 (0.072)  0.759  .449     [-0.086, 0.196]
##  5.444 (+ SD)                      -0.080 (0.102) -0.781  .435     [-0.279, 0.120]
## ──────────────────────────────────────────────────────────────────────────────────
print_table(S2mA.ii$model.y)
## ────────────────────────────────────────────────────────────────────────────────
##                                        Estimate    S.E.      df      t     p    
## ────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               2.810 (0.421) 163.646  6.683 <.001 ***
## W.X10                                     0.632 (0.266) 452.018  2.377  .018 *  
## W.X10BA.AIOnlineCommunicationSkillsV     -0.127 (0.060) 452.018 -2.103  .036 *  
## W.X01                                     0.537 (0.269) 367.087  1.997  .047 *  
## BA.AIOnlineCommunicationSkillsV           0.216 (0.095) 163.646  2.272  .024 *  
## W.X01:BA.AIOnlineCommunicationSkillsV    -0.113 (0.061) 367.087 -1.862  .063 .  
## ────────────────────────────────────────────────────────────────────────────────
interact_plot(S2mA.i$model.y, W.X10, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S2mA.ii$model.y, W.X01, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

8.2.2.2 WP.TakingChargeBehaviorsForSystemImprovementV

S2mB.i=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X10", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X01","W.X01BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X10
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X01, W.X01BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.546 ***                                          1.773 ***                                     
##                                          (0.122)                                            (0.435)                                        
## W.X01                                     0.372                                              0.785 **                                      
##                                          (0.233)                                            (0.270)                                        
## W.X01BA.AIOnlineCommunicationSkillsV     -0.078                                             -0.175 **                                      
##                                          (0.052)                                            (0.061)                                        
## W.X10                                     0.103                                              0.322                                         
##                                          (0.065)                                            (0.241)                                        
## BA.AIOnlineCommunicationSkillsV                                                              0.416 ***                                     
##                                                                                             (0.098)                                        
## W.X10:BA.AIOnlineCommunicationSkillsV                                                       -0.051                                         
##                                                                                             (0.055)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.002                                              0.066                                         
## Conditional R^2                           0.743                                              0.741                                         
## AIC                                    2944.121                                           2938.140                                         
## BIC                                    2997.862                                           3001.651                                         
## Num. obs.                               978                                                978                                             
## Num. groups: B.ID                       163                                                163                                             
## Var: B.ID (Intercept)                     2.106                                              1.871                                         
## Var: B.ID W.X10                           0.005                                              0.000                                         
## Var: B.ID W.X01                           0.206                                              0.170                                         
## Cov: B.ID (Intercept) W.X10              -0.062                                             -0.029                                         
## Cov: B.ID (Intercept) W.X01              -0.273                                             -0.206                                         
## Cov: B.ID W.X10 W.X01                     0.030                                              0.003                                         
## Var: Residual                             0.678                                              0.680                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  0.89   1 648  .347    
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ─────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.164 (0.091) 1.795  .073 .   [-0.015, 0.343]
##  4.260 (Mean)                       0.103 (0.065) 1.598  .110     [-0.023, 0.230]
##  5.444 (+ SD)                       0.042 (0.091) 0.464  .643     [-0.137, 0.222]
## ─────────────────────────────────────────────────────────────────────────────────
S2mB.ii=PROCESS(data2, y="WP.TakingChargeBehaviorsForSystemImprovementV", x="W.X01", mods="BA.AIOnlineCommunicationSkillsV",covs=c("W.X10","W.X10BA.AIOnlineCommunicationSkillsV"), cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.TakingChargeBehaviorsForSystemImprovementV
## -  Predictor (X) : W.X01
## -  Mediators (M) : -
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X10, W.X10BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.TakingChargeBehaviorsForSystemImprovementV ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                        (1) WP.TakingChargeBehaviorsForSystemImprovementV  (2) WP.TakingChargeBehaviorsForSystemImprovementV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               3.546 ***                                          1.773 ***                                     
##                                          (0.122)                                            (0.435)                                        
## W.X10                                    -0.082                                              0.322                                         
##                                          (0.213)                                            (0.241)                                        
## W.X10BA.AIOnlineCommunicationSkillsV      0.043                                             -0.051                                         
##                                          (0.048)                                            (0.055)                                        
## W.X01                                     0.041                                              0.785 **                                      
##                                          (0.075)                                            (0.270)                                        
## BA.AIOnlineCommunicationSkillsV                                                              0.416 ***                                     
##                                                                                             (0.098)                                        
## W.X01:BA.AIOnlineCommunicationSkillsV                                                       -0.175 **                                      
##                                                                                             (0.061)                                        
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                              0.001                                              0.066                                         
## Conditional R^2                           0.738                                              0.741                                         
## AIC                                    2945.554                                           2938.140                                         
## BIC                                    2999.294                                           3001.651                                         
## Num. obs.                               978                                                978                                             
## Num. groups: B.ID                       163                                                163                                             
## Var: B.ID (Intercept)                     2.102                                              1.871                                         
## Var: B.ID W.X10                           0.007                                              0.000                                         
## Var: B.ID W.X01                           0.226                                              0.170                                         
## Cov: B.ID (Intercept) W.X10              -0.082                                             -0.029                                         
## Cov: B.ID (Intercept) W.X01              -0.314                                             -0.206                                         
## Cov: B.ID W.X10 W.X01                     0.038                                              0.003                                         
## Var: Residual                             0.681                                              0.680                                         
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  8.19   1 237  .005 ** 
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV" (Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.248 (0.104)  2.392  .018 *   [ 0.045, 0.451]
##  4.260 (Mean)                       0.041 (0.073)  0.559  .577     [-0.103, 0.184]
##  5.444 (+ SD)                      -0.166 (0.104) -1.602  .111     [-0.369, 0.037]
## ──────────────────────────────────────────────────────────────────────────────────
print_table(S2mB.ii$model.y)
## ────────────────────────────────────────────────────────────────────────────────
##                                        Estimate    S.E.      df      t     p    
## ────────────────────────────────────────────────────────────────────────────────
## (Intercept)                               1.773 (0.435) 162.496  4.076 <.001 ***
## W.X10                                     0.322 (0.241) 647.717  1.335  .182    
## W.X10BA.AIOnlineCommunicationSkillsV     -0.051 (0.055) 647.717 -0.941  .347    
## W.X01                                     0.785 (0.270) 236.714  2.908  .004 ** 
## BA.AIOnlineCommunicationSkillsV           0.416 (0.098) 162.496  4.230 <.001 ***
## W.X01:BA.AIOnlineCommunicationSkillsV    -0.175 (0.061) 236.714 -2.861  .005 ** 
## ────────────────────────────────────────────────────────────────────────────────
interact_plot(S2mB.i$model.y, W.X10, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X01 = 0, W.X01BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

interact_plot(S2mB.ii$model.y, W.X01, BA.AIOnlineCommunicationSkillsV,modx.values = "plus-minus",at = list(W.X10 = 0, W.X10BA.AIOnlineCommunicationSkillsV = 0))+ scale_y_continuous(breaks = seq(0, 10, by = 0.1))

8.2.3 M -> Y

PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="BA.AIOnlineCommunicationSkillsV", mods="W.X", cluster ="B.ID", hlm.re.y = "(W.X|B.ID)", center=FALSE,
        ,covs=cc("WA.ErrorStrainV.GroC,WA.ErrorStrainV_mean,WA.AffectiveRuminationV.GroC,WA.AffectiveRuminationV_mean"))
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : BA.AIOnlineCommunicationSkillsV
## -  Mediators (M) : -
## - Moderators (W) : W.X
## - Covariates (C) : WA.ErrorStrainV.GroC, WA.ErrorStrainV_mean, WA.AffectiveRuminationV.GroC, WA.AffectiveRuminationV_mean
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ WA.ErrorStrainV.GroC + WA.ErrorStrainV_mean + WA.AffectiveRuminationV.GroC + WA.AffectiveRuminationV_mean + BA.AIOnlineCommunicationSkillsV*W.X + (W.X|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                       (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.SystemPerformanceImprovementBehaviorV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                              0.569                                         0.175                                    
##                                         (0.379)                                       (0.403)                                   
## WA.ErrorStrainV.GroC                     0.000                                        -0.006                                    
##                                         (0.035)                                       (0.035)                                   
## WA.ErrorStrainV_mean                     0.269 **                                      0.269 **                                 
##                                         (0.104)                                       (0.104)                                   
## WA.AffectiveRuminationV.GroC             0.161 ***                                     0.156 ***                                
##                                         (0.038)                                       (0.038)                                   
## WA.AffectiveRuminationV_mean             0.170                                         0.170                                    
##                                         (0.101)                                       (0.101)                                   
## BA.AIOnlineCommunicationSkillsV          0.304 ***                                     0.392 ***                                
##                                         (0.071)                                       (0.078)                                   
## W.X1                                                                                   0.597 *                                  
##                                                                                       (0.257)                                   
## W.X2                                                                                   0.619 *                                  
##                                                                                       (0.260)                                   
## BA.AIOnlineCommunicationSkillsV:W.X1                                                  -0.135 *                                  
##                                                                                       (0.058)                                   
## BA.AIOnlineCommunicationSkillsV:W.X2                                                  -0.138 *                                  
##                                                                                       (0.059)                                   
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                             0.214                                         0.216                                    
## Conditional R^2                          0.695                                         0.698                                    
## AIC                                   2894.917                                      2909.420                                    
## BIC                                   2958.429                                      2992.473                                    
## Num. obs.                              978                                           978                                        
## Num. groups: B.ID                      163                                           163                                        
## Var: B.ID (Intercept)                    1.014                                         1.016                                    
## Var: B.ID W.X1                           0.078                                         0.084                                    
## Var: B.ID W.X2                           0.097                                         0.101                                    
## Cov: B.ID (Intercept) W.X1               0.027                                         0.026                                    
## Cov: B.ID (Intercept) W.X2              -0.007                                        -0.008                                    
## Cov: B.ID W.X1 W.X2                     -0.087                                        -0.092                                    
## Var: Residual                            0.689                                         0.682                                    
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.2.0)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ─────────────────────────────────────────────────────────────
##                                           F df1 df2     p    
## ─────────────────────────────────────────────────────────────
## BA.AIOnlineCommunicationSkillsV * W.X  4.11   2 257  .018 *  
## ─────────────────────────────────────────────────────────────
## 
## Simple Slopes: "BA.AIOnlineCommunicationSkillsV" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ────────────────────────────────────────────────────
##  "W.X" Effect    S.E.     t     p           [95% CI]
## ────────────────────────────────────────────────────
##  0      0.392 (0.078) 5.046 <.001 *** [0.240, 0.544]
##  1      0.257 (0.081) 3.163  .002 **  [0.098, 0.417]
##  2      0.254 (0.080) 3.170  .002 **  [0.097, 0.410]
## ────────────────────────────────────────────────────

8.2.4 Moderated mediation

S2mB.i=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X10",
               meds=cc("WP.TakingChargeBehaviorsForSystemImprovementV.GroC,WA.AffectiveRuminationV.GroC"), 
               mods="BA.AIOnlineCommunicationSkillsV",mod.path=c("x-m", "x-y"),
               covs=c("W.X01","W.X01BA.AIOnlineCommunicationSkillsV"), 
               cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE,
               ci="boot", nsim=1000, seed=1)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 8 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Parallel Multiple Moderated Mediation (2 meds)
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X10
## -  Mediators (M) : WP.TakingChargeBehaviorsForSystemImprovementV.GroC, WA.AffectiveRuminationV.GroC
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X01, W.X01BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Mediator:
## -    WP.TakingChargeBehaviorsForSystemImprovementV.GroC ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + (1 | B.ID)
## -    WA.AffectiveRuminationV.GroC ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + (1 | B.ID)
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X01 + W.X01BA.AIOnlineCommunicationSkillsV + W.X10*BA.AIOnlineCommunicationSkillsV + WP.TakingChargeBehaviorsForSystemImprovementV.GroC + WA.AffectiveRuminationV.GroC + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                                     (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.TakingChargeBehaviorsForSystemImprovementV.GroC  (3) WA.AffectiveRuminationV.GroC  (4) WP.SystemPerformanceImprovementBehaviorV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                            3.413 ***                                    -0.369 *                                                -0.390 *                           1.690 ***                                
##                                                       (0.108)                                       (0.161)                                                 (0.172)                           (0.364)                                   
## W.X01                                                  0.212                                         0.785 ***                                               0.537 *                           0.352                                    
##                                                       (0.239)                                       (0.227)                                                 (0.243)                           (0.246)                                   
## W.X01BA.AIOnlineCommunicationSkillsV                  -0.040                                        -0.175 ***                                              -0.113 *                          -0.078                                    
##                                                       (0.054)                                       (0.051)                                                 (0.055)                           (0.056)                                   
## W.X10                                                  0.038                                         0.322                                                   0.632 **                          0.502 *                                  
##                                                       (0.070)                                       (0.227)                                                 (0.243)                           (0.240)                                   
## BA.AIOnlineCommunicationSkillsV                                                                      0.075 *                                                 0.080 *                           0.410 ***                                
##                                                                                                     (0.036)                                                 (0.039)                           (0.082)                                   
## W.X10:BA.AIOnlineCommunicationSkillsV                                                               -0.051                                                  -0.127 *                          -0.120 *                                  
##                                                                                                     (0.051)                                                 (0.055)                           (0.054)                                   
## WP.TakingChargeBehaviorsForSystemImprovementV.GroC                                                                                                                                             0.363 ***                                
##                                                                                                                                                                                               (0.033)                                   
## WA.AffectiveRuminationV.GroC                                                                                                                                                                   0.116 ***                                
##                                                                                                                                                                                               (0.031)                                   
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                           0.000                                         0.015                                                   0.009                             0.119                                    
## Conditional R^2                                        0.685                                         0.015                                                   0.009                             0.737                                    
## AIC                                                 2960.196                                      2320.820                                                2450.643                          2826.787                                    
## BIC                                                 3013.937                                      2359.905                                                2489.727                          2900.070                                    
## Num. obs.                                            978                                           978                                                     978                               978                                        
## Num. groups: B.ID                                    163                                           163                                                     163                               163                                        
## Var: B.ID (Intercept)                                  1.552                                         0.000                                                   0.000                             1.253                                    
## Var: B.ID W.X10                                        0.087                                                                                                                                   0.077                                    
## Var: B.ID W.X01                                        0.087                                                                                                                                   0.106                                    
## Cov: B.ID (Intercept) W.X10                           -0.040                                                                                                                                   0.062                                    
## Cov: B.ID (Intercept) W.X01                           -0.066                                                                                                                                   0.051                                    
## Cov: B.ID W.X10 W.X01                                 -0.083                                                                                                                                  -0.085                                    
## Var: Residual                                          0.710                                         0.604                                                   0.691                             0.591                                    
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.2.0)
## Effect Type : Parallel Multiple Moderated Mediation (2 meds) (Model 8)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : set.seed(1)
## Simulations : 1000 (Bootstrap)
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  4.92   1 314  .027 *  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## (Conditional Direct Effects [c'] of X on Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.132 (0.091)  1.453  .147     [-0.046, 0.310]
##  4.260 (Mean)                      -0.010 (0.064) -0.159  .874     [-0.136, 0.115]
##  5.444 (+ SD)                      -0.153 (0.091) -1.685  .093 .   [-0.330, 0.025]
## ──────────────────────────────────────────────────────────────────────────────────
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV.GroC" (M)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  1.00   1 972  .318    
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV.GroC" (M)
## (Conditional Effects [a] of X on M)
## ─────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.164 (0.086) 1.905  .057 .   [-0.005, 0.333]
##  4.260 (Mean)                       0.103 (0.061) 1.696  .090 .   [-0.016, 0.223]
##  5.444 (+ SD)                       0.042 (0.086) 0.493  .622     [-0.126, 0.211]
## ─────────────────────────────────────────────────────────────────────────────────
## 
## Running 1000 * 3 simulations...
## Indirect Path: "W.X10" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV.GroC" (M) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ─────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.     z     p       [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.060 (0.032) 1.896  .058 .   [ 0.003, 0.122]
##  4.260 (Mean)                       0.038 (0.023) 1.672  .094 .   [-0.005, 0.084]
##  5.444 (+ SD)                       0.015 (0.032) 0.464  .643     [-0.051, 0.079]
## ─────────────────────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 1000 Monte Carlo samples.)
## 
## Interaction Effect on "WA.AffectiveRuminationV.GroC" (M)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X10 * BA.AIOnlineCommunicationSkillsV  5.29   1 972  .022 *  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X10" (X) ==> "WA.AffectiveRuminationV.GroC" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.243 (0.092)  2.640  .008 **  [ 0.063, 0.424]
##  4.260 (Mean)                       0.093 (0.065)  1.432  .152     [-0.034, 0.221]
##  5.444 (+ SD)                      -0.057 (0.092) -0.615  .539     [-0.237, 0.124]
## ──────────────────────────────────────────────────────────────────────────────────
## 
## Running 1000 * 3 simulations...
## Indirect Path: "W.X10" (X) ==> "WA.AffectiveRuminationV.GroC" (M) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      z     p       [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.029 (0.014)  2.115  .034 *   [ 0.007, 0.058]
##  4.260 (Mean)                       0.011 (0.008)  1.290  .197     [-0.004, 0.029]
##  5.444 (+ SD)                      -0.007 (0.012) -0.581  .561     [-0.032, 0.015]
## ──────────────────────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 1000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)
S2mB.ii=PROCESS(data2, y="WP.SystemPerformanceImprovementBehaviorV", x="W.X01",
                meds=cc("WP.TakingChargeBehaviorsForSystemImprovementV.GroC,WA.AffectiveRuminationV.GroC"), 
                mods="BA.AIOnlineCommunicationSkillsV",mod.path=c("x-m", "x-y"),
                covs=c("W.X10","W.X10BA.AIOnlineCommunicationSkillsV"), 
                cluster ="B.ID", hlm.re.y = "(W.X10+W.X01|B.ID)", center=FALSE,
                ci="boot", nsim=1000, seed=1)
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 8 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Parallel Multiple Moderated Mediation (2 meds)
## -    Outcome (Y) : WP.SystemPerformanceImprovementBehaviorV
## -  Predictor (X) : W.X01
## -  Mediators (M) : WP.TakingChargeBehaviorsForSystemImprovementV.GroC, WA.AffectiveRuminationV.GroC
## - Moderators (W) : BA.AIOnlineCommunicationSkillsV
## - Covariates (C) : W.X10, W.X10BA.AIOnlineCommunicationSkillsV
## -   HLM Clusters : B.ID
## 
## Formula of Mediator:
## -    WP.TakingChargeBehaviorsForSystemImprovementV.GroC ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + (1 | B.ID)
## -    WA.AffectiveRuminationV.GroC ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + (1 | B.ID)
## Formula of Outcome:
## -    WP.SystemPerformanceImprovementBehaviorV ~ W.X10 + W.X10BA.AIOnlineCommunicationSkillsV + W.X01*BA.AIOnlineCommunicationSkillsV + WP.TakingChargeBehaviorsForSystemImprovementV.GroC + WA.AffectiveRuminationV.GroC + (W.X10+W.X01|B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                                     (1) WP.SystemPerformanceImprovementBehaviorV  (2) WP.TakingChargeBehaviorsForSystemImprovementV.GroC  (3) WA.AffectiveRuminationV.GroC  (4) WP.SystemPerformanceImprovementBehaviorV
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                            3.413 ***                                    -0.369 *                                                -0.390 *                           1.690 ***                                
##                                                       (0.108)                                       (0.161)                                                 (0.172)                           (0.364)                                   
## W.X10                                                  0.274                                         0.322                                                   0.632 **                          0.502 *                                  
##                                                       (0.241)                                       (0.227)                                                 (0.243)                           (0.240)                                   
## W.X10BA.AIOnlineCommunicationSkillsV                  -0.055                                        -0.051                                                  -0.127 *                          -0.120 *                                  
##                                                       (0.054)                                       (0.051)                                                 (0.055)                           (0.054)                                   
## W.X01                                                  0.039                                         0.785 ***                                               0.537 *                           0.352                                    
##                                                       (0.070)                                       (0.227)                                                 (0.243)                           (0.246)                                   
## BA.AIOnlineCommunicationSkillsV                                                                      0.075 *                                                 0.080 *                           0.410 ***                                
##                                                                                                     (0.036)                                                 (0.039)                           (0.082)                                   
## W.X01:BA.AIOnlineCommunicationSkillsV                                                               -0.175 ***                                              -0.113 *                          -0.078                                    
##                                                                                                     (0.051)                                                 (0.055)                           (0.056)                                   
## WP.TakingChargeBehaviorsForSystemImprovementV.GroC                                                                                                                                             0.363 ***                                
##                                                                                                                                                                                               (0.033)                                   
## WA.AffectiveRuminationV.GroC                                                                                                                                                                   0.116 ***                                
##                                                                                                                                                                                               (0.031)                                   
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                           0.001                                         0.015                                                   0.009                             0.119                                    
## Conditional R^2                                        0.686                                         0.015                                                   0.009                             0.737                                    
## AIC                                                 2959.761                                      2320.820                                                2450.643                          2826.787                                    
## BIC                                                 3013.501                                      2359.905                                                2489.727                          2900.070                                    
## Num. obs.                                            978                                           978                                                     978                               978                                        
## Num. groups: B.ID                                    163                                           163                                                     163                               163                                        
## Var: B.ID (Intercept)                                  1.553                                         0.000                                                   0.000                             1.253                                    
## Var: B.ID W.X10                                        0.079                                                                                                                                   0.077                                    
## Var: B.ID W.X01                                        0.096                                                                                                                                   0.106                                    
## Cov: B.ID (Intercept) W.X10                           -0.008                                                                                                                                   0.062                                    
## Cov: B.ID (Intercept) W.X01                           -0.092                                                                                                                                   0.051                                    
## Cov: B.ID W.X10 W.X01                                 -0.084                                                                                                                                  -0.085                                    
## Var: Residual                                          0.709                                         0.604                                                   0.691                             0.591                                    
## ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.2.0)
## Effect Type : Parallel Multiple Moderated Mediation (2 meds) (Model 8)
## Sample Size : 978 (6 missing observations deleted)
## Random Seed : set.seed(1)
## Simulations : 1000 (Bootstrap)
## 
## Interaction Effect on "WP.SystemPerformanceImprovementBehaviorV" (Y)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  1.99   1 274  .159    
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## (Conditional Direct Effects [c'] of X on Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.111 (0.093)  1.194  .233     [-0.071, 0.293]
##  4.260 (Mean)                       0.018 (0.065)  0.277  .782     [-0.110, 0.146]
##  5.444 (+ SD)                      -0.075 (0.093) -0.808  .420     [-0.257, 0.107]
## ──────────────────────────────────────────────────────────────────────────────────
## 
## Interaction Effect on "WP.TakingChargeBehaviorsForSystemImprovementV.GroC" (M)
## ────────────────────────────────────────────────────────────────
##                                              F df1 df2     p    
## ────────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  11.51   1 972 <.001 ***
## ────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV.GroC" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.248 (0.086)  2.875  .004 **  [ 0.079, 0.416]
##  4.260 (Mean)                       0.041 (0.061)  0.672  .502     [-0.078, 0.160]
##  5.444 (+ SD)                      -0.166 (0.086) -1.925  .054 .   [-0.335, 0.003]
## ──────────────────────────────────────────────────────────────────────────────────
## 
## Running 1000 * 3 simulations...
## Indirect Path: "W.X01" (X) ==> "WP.TakingChargeBehaviorsForSystemImprovementV.GroC" (M) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      z     p       [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.091 (0.032)  2.795  .005 **  [ 0.031, 0.156]
##  4.260 (Mean)                       0.015 (0.022)  0.677  .498     [-0.028, 0.060]
##  5.444 (+ SD)                      -0.061 (0.032) -1.868  .062 .   [-0.125, 0.003]
## ──────────────────────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 1000 Monte Carlo samples.)
## 
## Interaction Effect on "WA.AffectiveRuminationV.GroC" (M)
## ───────────────────────────────────────────────────────────────
##                                             F df1 df2     p    
## ───────────────────────────────────────────────────────────────
## W.X01 * BA.AIOnlineCommunicationSkillsV  4.24   1 972  .040 *  
## ───────────────────────────────────────────────────────────────
## 
## Simple Slopes: "W.X01" (X) ==> "WA.AffectiveRuminationV.GroC" (M)
## (Conditional Effects [a] of X on M)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      t     p            [95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.189 (0.092)  2.049  .041 *   [ 0.008, 0.369]
##  4.260 (Mean)                       0.055 (0.065)  0.839  .402     [-0.073, 0.182]
##  5.444 (+ SD)                      -0.080 (0.092) -0.863  .388     [-0.260, 0.101]
## ──────────────────────────────────────────────────────────────────────────────────
## 
## Running 1000 * 3 simulations...
## Indirect Path: "W.X01" (X) ==> "WA.AffectiveRuminationV.GroC" (M) ==> "WP.SystemPerformanceImprovementBehaviorV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ──────────────────────────────────────────────────────────────────────────────────
##  "BA.AIOnlineCommunicationSkillsV" Effect    S.E.      z     p       [MCMC 95% CI]
## ──────────────────────────────────────────────────────────────────────────────────
##  3.075 (- SD)                       0.022 (0.013)  1.759  .079 .   [ 0.002, 0.050]
##  4.260 (Mean)                       0.006 (0.008)  0.781  .435     [-0.010, 0.024]
##  5.444 (+ SD)                      -0.010 (0.012) -0.796  .426     [-0.035, 0.013]
## ──────────────────────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 1000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)