I.

Set up the data for semi-parametric continuous models via Poisson regression by splitting the experience of each person in different episodes, each episode being each 5-year age group.

data1<-read.csv("C:\\Users\\anami\\OneDrive\\Documents\\EHA\\Assignment 6\\data1.csv")
#Split data by change in age groups
library(survival)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
data2<-data1 %>%
  mutate(
        dead = died0121,
        ageint_tv = ageint,
        agecensor_tv = agecensor
       )
data2
# Expands data into person-months, up to maximum number age in months observed in data
mhas_splitpoisson<-survSplit(data2, cut=c(50,55,60,65,70,75,80,85), start="ageint_tv", end="agecensor_tv", event="dead")
# Sorting data by ID
mhas_splitpoisson<-mhas_splitpoisson[order (mhas_splitpoisson$id, mhas_splitpoisson$ageint_tv),]
#Creating time-varying age variables for different model specifications0
mhas_splitpoisson<-mhas_splitpoisson %>%
  mutate(
  age=trunc(ageint_tv),
  exposure=agecensor_tv-ageint_tv,
  .after = "died0121"
  )
library(dplyr)
library(ggplot2)
#install.packages("AMR")
library(AMR)
mhas_splitpoisson <- mhas_splitpoisson %>% 
  mutate(
  # Create age groups
  age5 = dplyr::case_when(
    age >= 50 & age < 55 ~ "50-54",
    age >= 55 & age < 60 ~ "55-59",
    age >= 60 & age < 65 ~ "60-64",
    age >= 65 & age < 70 ~ "65-69",
    age >= 70 & age < 75 ~ "70-74",
    age >= 75 & age < 80 ~ "75-79",
    age >= 80 & age < 85 ~ "80-84",
    age >= 85             ~ "85+"
  ),
  # Convert to factor
  age5 = factor(
    age5,
    level = c("50-54", "55-59","60-64","65-69","70-74","75-79","80-84","85+")
)
)

II.

On this “split” data, estimate a Poisson model using the log of exposure as an offset and controlling for age group (as dummies) as well as by FEMALE, EDUCLEVEL (or SCHOOLING, whatever you have been using) and LOCSIZE01 (all as factors, except for SCHOOLING if you are using years thereof).

# Remember to always add log(exposure) as offset
fit.poisson<-glm(dead ~ offset(log(exposure)) + age5 + female + as.factor(educlevel) + as.factor(locsize01), data=mhas_splitpoisson, family=poisson(link=log))
summary(fit.poisson)
## 
## Call:
## glm(formula = dead ~ offset(log(exposure)) + age5 + female + 
##     as.factor(educlevel) + as.factor(locsize01), family = poisson(link = log), 
##     data = mhas_splitpoisson)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             -4.75489    0.18347 -25.917  < 2e-16 ***
## age555-59                0.07273    0.20391   0.357 0.721323    
## age560-64                0.78169    0.18804   4.157 3.22e-05 ***
## age565-69                1.30473    0.18392   7.094 1.30e-12 ***
## age570-74                1.51745    0.18334   8.277  < 2e-16 ***
## age575-79                1.93465    0.18314  10.564  < 2e-16 ***
## age580-84                2.37316    0.18334  12.944  < 2e-16 ***
## age585+                  3.07802    0.18230  16.884  < 2e-16 ***
## female                  -0.25105    0.02962  -8.477  < 2e-16 ***
## as.factor(educlevel)15  -0.03017    0.03585  -0.841 0.400093    
## as.factor(educlevel)68  -0.08432    0.04432  -1.902 0.057126 .  
## as.factor(educlevel)919 -0.20891    0.05228  -3.996 6.45e-05 ***
## as.factor(locsize01)2   -0.01968    0.04183  -0.470 0.638045    
## as.factor(locsize01)3   -0.08353    0.05129  -1.629 0.103416    
## as.factor(locsize01)4   -0.15223    0.04192  -3.632 0.000281 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 24070  on 32737  degrees of freedom
## Residual deviance: 20851  on 32723  degrees of freedom
##   (1390 observations deleted due to missingness)
## AIC: 30279
## 
## Number of Fisher Scoring iterations: 6
AIC(fit.poisson)
## [1] 30278.77
BIC(fit.poisson)
## [1] 30404.71
#exp(cbind(coef(fit.poisson), confint(fit.poisson)))

III.

Test for the proportionality of hazards for FEMALE, SCHOOLING/EDUCLEVEL, and LOCSIZE01.

# Test for proportionality of hazards for gender (female)
fit_gender <- glm(dead ~ offset(log(exposure)) +age5 + female + as.factor(educlevel) + as.factor(locsize01) +
                  age5:female, 
                  data = mhas_splitpoisson, family = poisson(link = "log"))
summary(fit_gender)
## 
## Call:
## glm(formula = dead ~ offset(log(exposure)) + age5 + female + 
##     as.factor(educlevel) + as.factor(locsize01) + age5:female, 
##     family = poisson(link = "log"), data = mhas_splitpoisson)
## 
## Coefficients:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             -4.86086    0.25246 -19.254  < 2e-16 ***
## age555-59                0.20153    0.28077   0.718 0.472888    
## age560-64                0.91210    0.26102   3.494 0.000475 ***
## age565-69                1.45796    0.25569   5.702 1.18e-08 ***
## age570-74                1.65723    0.25515   6.495 8.30e-11 ***
## age575-79                2.07369    0.25505   8.131 4.27e-16 ***
## age580-84                2.50370    0.25560   9.795  < 2e-16 ***
## age585+                  3.08093    0.25438  12.112  < 2e-16 ***
## female                  -0.01484    0.35928  -0.041 0.967045    
## as.factor(educlevel)15  -0.03066    0.03586  -0.855 0.392458    
## as.factor(educlevel)68  -0.08720    0.04434  -1.967 0.049226 *  
## as.factor(educlevel)919 -0.21228    0.05232  -4.057 4.96e-05 ***
## as.factor(locsize01)2   -0.01958    0.04183  -0.468 0.639657    
## as.factor(locsize01)3   -0.08011    0.05130  -1.561 0.118427    
## as.factor(locsize01)4   -0.15014    0.04192  -3.582 0.000341 ***
## age555-59:female        -0.28585    0.40888  -0.699 0.484486    
## age560-64:female        -0.28736    0.37635  -0.764 0.445128    
## age565-69:female        -0.33416    0.36793  -0.908 0.363766    
## age570-74:female        -0.30298    0.36663  -0.826 0.408575    
## age575-79:female        -0.29906    0.36602  -0.817 0.413898    
## age580-84:female        -0.28064    0.36624  -0.766 0.443514    
## age585+:female          -0.05916    0.36394  -0.163 0.870878    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 24070  on 32737  degrees of freedom
## Residual deviance: 20837  on 32716  degrees of freedom
##   (1390 observations deleted due to missingness)
## AIC: 30279
## 
## Number of Fisher Scoring iterations: 6
cat("AIC for gender proportionality test:", AIC(fit_gender), "\n")
## AIC for gender proportionality test: 30279.13
cat("BIC for gender proportionality test:", BIC(fit_gender), "\n")
## BIC for gender proportionality test: 30463.84

.

# Test for proportionality of hazards for education level (educlevel)
fit_educ <- glm(dead ~ offset(log(exposure)) +age5 + female + as.factor(educlevel) + as.factor(locsize01) +
                age5:as.factor(educlevel), 
                data = mhas_splitpoisson, family = poisson(link = "log"))
summary(fit_educ)
## 
## Call:
## glm(formula = dead ~ offset(log(exposure)) + age5 + female + 
##     as.factor(educlevel) + as.factor(locsize01) + age5:as.factor(educlevel), 
##     family = poisson(link = "log"), data = mhas_splitpoisson)
## 
## Coefficients:
##                                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                       -4.56443    0.44783 -10.192  < 2e-16 ***
## age555-59                          0.11660    0.49532   0.235 0.813894    
## age560-64                          0.54354    0.46597   1.166 0.243424    
## age565-69                          1.13977    0.45495   2.505 0.012236 *  
## age570-74                          1.35458    0.45282   2.991 0.002776 ** 
## age575-79                          1.80457    0.45137   3.998 6.39e-05 ***
## age580-84                          2.12984    0.45126   4.720 2.36e-06 ***
## age585+                            2.86658    0.44914   6.382 1.74e-10 ***
## female                            -0.25250    0.02964  -8.519  < 2e-16 ***
## as.factor(educlevel)15            -0.16151    0.54756  -0.295 0.768016    
## as.factor(educlevel)68            -0.27792    0.55772  -0.498 0.618264    
## as.factor(educlevel)919           -0.58196    0.58541  -0.994 0.320171    
## as.factor(locsize01)2             -0.01852    0.04186  -0.443 0.658126    
## as.factor(locsize01)3             -0.08297    0.05133  -1.616 0.106006    
## as.factor(locsize01)4             -0.15188    0.04193  -3.622 0.000292 ***
## age555-59:as.factor(educlevel)15  -0.03665    0.61015  -0.060 0.952103    
## age560-64:as.factor(educlevel)15   0.11915    0.57162   0.208 0.834886    
## age565-69:as.factor(educlevel)15   0.07840    0.55809   0.140 0.888276    
## age570-74:as.factor(educlevel)15   0.17049    0.55530   0.307 0.758833    
## age575-79:as.factor(educlevel)15  -0.01573    0.55413  -0.028 0.977359    
## age580-84:as.factor(educlevel)15   0.23213    0.55373   0.419 0.675065    
## age585+:as.factor(educlevel)15     0.15792    0.55124   0.286 0.774503    
## age555-59:as.factor(educlevel)68  -0.27595    0.63234  -0.436 0.662554    
## age560-64:as.factor(educlevel)68   0.35331    0.58227   0.607 0.543996    
## age565-69:as.factor(educlevel)68   0.22071    0.56929   0.388 0.698241    
## age570-74:as.factor(educlevel)68   0.07589    0.56800   0.134 0.893717    
## age575-79:as.factor(educlevel)68   0.18590    0.56639   0.328 0.742741    
## age580-84:as.factor(educlevel)68   0.19850    0.56784   0.350 0.726658    
## age585+:as.factor(educlevel)68     0.21836    0.56485   0.387 0.699061    
## age555-59:as.factor(educlevel)919  0.10596    0.65416   0.162 0.871325    
## age560-64:as.factor(educlevel)919  0.41438    0.61191   0.677 0.498282    
## age565-69:as.factor(educlevel)919  0.29838    0.59875   0.498 0.618249    
## age570-74:as.factor(educlevel)919  0.26038    0.59748   0.436 0.662992    
## age575-79:as.factor(educlevel)919  0.34543    0.59711   0.579 0.562925    
## age580-84:as.factor(educlevel)919  0.50768    0.59951   0.847 0.397095    
## age585+:as.factor(educlevel)919    0.50600    0.59676   0.848 0.396487    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 24070  on 32737  degrees of freedom
## Residual deviance: 20834  on 32702  degrees of freedom
##   (1390 observations deleted due to missingness)
## AIC: 30304
## 
## Number of Fisher Scoring iterations: 6
cat("AIC for education proportionality test:", AIC(fit_educ), "\n")
## AIC for education proportionality test: 30304.19
cat("BIC for education proportionality test:", BIC(fit_educ), "\n")
## BIC for education proportionality test: 30606.46
# Test for proportionality of hazards for location size (locsize01)
fit_locsize <- glm(dead ~ offset(log(exposure))+age5 + female + as.factor(educlevel) + as.factor(locsize01) +
                   age5:as.factor(locsize01), 
                   data = mhas_splitpoisson, family = poisson(link = "log"))
summary(fit_locsize)
## 
## Call:
## glm(formula = dead ~ offset(log(exposure)) + age5 + female + 
##     as.factor(educlevel) + as.factor(locsize01) + age5:as.factor(locsize01), 
##     family = poisson(link = "log"), data = mhas_splitpoisson)
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                     -4.64370    0.21620 -21.479  < 2e-16 ***
## age555-59                       -0.03910    0.24613  -0.159  0.87378    
## age560-64                        0.66606    0.22487   2.962  0.00306 ** 
## age565-69                        1.20423    0.21924   5.493 3.96e-08 ***
## age570-74                        1.41754    0.21851   6.487 8.74e-11 ***
## age575-79                        1.83560    0.21829   8.409  < 2e-16 ***
## age580-84                        2.22487    0.21892  10.163  < 2e-16 ***
## age585+                          2.96668    0.21721  13.658  < 2e-16 ***
## female                          -0.25035    0.02963  -8.449  < 2e-16 ***
## as.factor(educlevel)15          -0.02958    0.03591  -0.824  0.40999    
## as.factor(educlevel)68          -0.08462    0.04438  -1.907  0.05655 .  
## as.factor(educlevel)919         -0.21159    0.05237  -4.041 5.33e-05 ***
## as.factor(locsize01)2           -0.18102    0.49535  -0.365  0.71478    
## as.factor(locsize01)3           -0.94242    1.01937  -0.925  0.35522    
## as.factor(locsize01)4           -0.53473    0.61485  -0.870  0.38447    
## age555-59:as.factor(locsize01)2  0.43189    0.55129   0.783  0.43339    
## age560-64:as.factor(locsize01)2  0.28129    0.51797   0.543  0.58709    
## age565-69:as.factor(locsize01)2  0.11530    0.50816   0.227  0.82050    
## age570-74:as.factor(locsize01)2  0.07973    0.50670   0.157  0.87497    
## age575-79:as.factor(locsize01)2  0.02724    0.50616   0.054  0.95708    
## age580-84:as.factor(locsize01)2  0.33722    0.50439   0.669  0.50377    
## age585+:as.factor(locsize01)2    0.13865    0.50200   0.276  0.78240    
## age555-59:as.factor(locsize01)3  0.13126    1.14181   0.115  0.90848    
## age560-64:as.factor(locsize01)3  0.99101    1.03748   0.955  0.33947    
## age565-69:as.factor(locsize01)3  0.97453    1.02810   0.948  0.34318    
## age570-74:as.factor(locsize01)3  0.94286    1.02676   0.918  0.35847    
## age575-79:as.factor(locsize01)3  0.70712    1.02714   0.688  0.49117    
## age580-84:as.factor(locsize01)3  0.81663    1.02657   0.795  0.42633    
## age585+:as.factor(locsize01)3    0.89011    1.02368   0.870  0.38457    
## age555-59:as.factor(locsize01)4  0.30837    0.68141   0.453  0.65088    
## age560-64:as.factor(locsize01)4  0.18105    0.63917   0.283  0.77698    
## age565-69:as.factor(locsize01)4  0.28566    0.62550   0.457  0.64789    
## age570-74:as.factor(locsize01)4  0.33823    0.62315   0.543  0.58728    
## age575-79:as.factor(locsize01)4  0.50260    0.62146   0.809  0.41867    
## age580-84:as.factor(locsize01)4  0.44258    0.62220   0.711  0.47688    
## age585+:as.factor(locsize01)4    0.38236    0.61917   0.618  0.53688    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 24070  on 32737  degrees of freedom
## Residual deviance: 20829  on 32702  degrees of freedom
##   (1390 observations deleted due to missingness)
## AIC: 30299
## 
## Number of Fisher Scoring iterations: 6
cat("AIC for location size proportionality test:", AIC(fit_locsize), "\n")
## AIC for location size proportionality test: 30298.79
cat("BIC for location size proportionality test:", BIC(fit_locsize), "\n")
## BIC for location size proportionality test: 30601.06

IV.

Exponentiate the coefficients, add them to the table with all other HRs.

# Function to extract and exponentiate coefficients
get_exponentiated_coefficients <- function(model) {
  coef_table <- summary(model)$coefficients
  hr <- exp(coef_table[, "Estimate"])  # Exponentiate coefficients to get HRs
  ci <- exp(confint(model))  # Confidence intervals for HRs
  result <- cbind(Coefficient = coef_table[, "Estimate"], 
                  SE = coef_table[, "Std. Error"],
                  HR = hr, 
                  CI_Lower = ci[, 1], 
                  CI_Upper = ci[, 2],
                  p_value = coef_table[, "Pr(>|z|)"])
  return(result)
}

# Exponentiate coefficients for gender model
gender_results <- get_exponentiated_coefficients(fit_gender)
## Waiting for profiling to be done...
# Exponentiate coefficients for education level model
educ_results <- get_exponentiated_coefficients(fit_educ)
## Waiting for profiling to be done...
# Exponentiate coefficients for location size model
locsize_results <- get_exponentiated_coefficients(fit_locsize)
## Waiting for profiling to be done...
# Combine results into a single table
all_results <- list(
  Gender = gender_results,
  Education = educ_results,
  LocationSize = locsize_results
)

# Print each table
for (name in names(all_results)) {
  cat("\n=== Model:", name, "===\n")
  print(all_results[[name]])
}
# Optional: Combine all tables into one for export
combined_results <- do.call(rbind, lapply(names(all_results), function(name) {
  data.frame(Model = name, all_results[[name]])
}))

# Display the combined results
print(combined_results)
##                                          Model Coefficient         SE
## (Intercept)                             Gender -4.86085830 0.25245833
## age555-59                               Gender  0.20153123 0.28076714
## age560-64                               Gender  0.91210160 0.26101529
## age565-69                               Gender  1.45796327 0.25569023
## age570-74                               Gender  1.65722766 0.25514923
## age575-79                               Gender  2.07369292 0.25504526
## age580-84                               Gender  2.50370295 0.25559974
## age585+                                 Gender  3.08092990 0.25437792
## female                                  Gender -0.01484349 0.35928211
## as.factor(educlevel)15                  Gender -0.03066452 0.03585787
## as.factor(educlevel)68                  Gender -0.08720355 0.04434172
## as.factor(educlevel)919                 Gender -0.21227725 0.05231948
## as.factor(locsize01)2                   Gender -0.01958424 0.04183069
## as.factor(locsize01)3                   Gender -0.08010758 0.05130470
## as.factor(locsize01)4                   Gender -0.15014289 0.04191607
## age555-59:female                        Gender -0.28585275 0.40888391
## age560-64:female                        Gender -0.28736277 0.37634518
## age565-69:female                        Gender -0.33416309 0.36793465
## age570-74:female                        Gender -0.30298145 0.36662657
## age575-79:female                        Gender -0.29906013 0.36602300
## age580-84:female                        Gender -0.28063610 0.36623536
## age585+:female                          Gender -0.05915602 0.36394043
## (Intercept)1                         Education -4.56442871 0.44782537
## age555-591                           Education  0.11660034 0.49531593
## age560-641                           Education  0.54354234 0.46597157
## age565-691                           Education  1.13976955 0.45495089
## age570-741                           Education  1.35458383 0.45281532
## age575-791                           Education  1.80457335 0.45136834
## age580-841                           Education  2.12984305 0.45125833
## age585+1                             Education  2.86657623 0.44914449
## female1                              Education -0.25249902 0.02963914
## as.factor(educlevel)151              Education -0.16151400 0.54756002
## as.factor(educlevel)681              Education -0.27791946 0.55772177
## as.factor(educlevel)9191             Education -0.58196073 0.58541058
## as.factor(locsize01)21               Education -0.01852335 0.04186045
## as.factor(locsize01)31               Education -0.08296619 0.05132755
## as.factor(locsize01)41               Education -0.15188433 0.04193216
## age555-59:as.factor(educlevel)15     Education -0.03664900 0.61014701
## age560-64:as.factor(educlevel)15     Education  0.11914870 0.57162391
## age565-69:as.factor(educlevel)15     Education  0.07840348 0.55808973
## age570-74:as.factor(educlevel)15     Education  0.17048584 0.55530339
## age575-79:as.factor(educlevel)15     Education -0.01572622 0.55413357
## age580-84:as.factor(educlevel)15     Education  0.23212793 0.55373079
## age585+:as.factor(educlevel)15       Education  0.15792453 0.55123994
## age555-59:as.factor(educlevel)68     Education -0.27594722 0.63234126
## age560-64:as.factor(educlevel)68     Education  0.35331310 0.58227457
## age565-69:as.factor(educlevel)68     Education  0.22071050 0.56928747
## age570-74:as.factor(educlevel)68     Education  0.07588609 0.56800106
## age575-79:as.factor(educlevel)68     Education  0.18590489 0.56639429
## age580-84:as.factor(educlevel)68     Education  0.19850075 0.56783539
## age585+:as.factor(educlevel)68       Education  0.21836278 0.56484561
## age555-59:as.factor(educlevel)919    Education  0.10595799 0.65416144
## age560-64:as.factor(educlevel)919    Education  0.41438098 0.61190713
## age565-69:as.factor(educlevel)919    Education  0.29837852 0.59875322
## age570-74:as.factor(educlevel)919    Education  0.26037577 0.59748458
## age575-79:as.factor(educlevel)919    Education  0.34543111 0.59711322
## age580-84:as.factor(educlevel)919    Education  0.50767500 0.59950693
## age585+:as.factor(educlevel)919      Education  0.50599856 0.59675854
## (Intercept)2                      LocationSize -4.64370431 0.21619949
## age555-592                        LocationSize -0.03909914 0.24612589
## age560-642                        LocationSize  0.66606383 0.22487332
## age565-692                        LocationSize  1.20423092 0.21924096
## age570-742                        LocationSize  1.41753940 0.21851321
## age575-792                        LocationSize  1.83560444 0.21828538
## age580-842                        LocationSize  2.22487054 0.21891803
## age585+2                          LocationSize  2.96668335 0.21721205
## female2                           LocationSize -0.25035301 0.02963160
## as.factor(educlevel)152           LocationSize -0.02958308 0.03590605
## as.factor(educlevel)682           LocationSize -0.08461787 0.04437833
## as.factor(educlevel)9192          LocationSize -0.21158549 0.05236615
## as.factor(locsize01)22            LocationSize -0.18102330 0.49534884
## as.factor(locsize01)32            LocationSize -0.94241948 1.01937443
## as.factor(locsize01)42            LocationSize -0.53472782 0.61485043
## age555-59:as.factor(locsize01)2   LocationSize  0.43188744 0.55129468
## age560-64:as.factor(locsize01)2   LocationSize  0.28128865 0.51796839
## age565-69:as.factor(locsize01)2   LocationSize  0.11530441 0.50816061
## age570-74:as.factor(locsize01)2   LocationSize  0.07973083 0.50670270
## age575-79:as.factor(locsize01)2   LocationSize  0.02723850 0.50615716
## age580-84:as.factor(locsize01)2   LocationSize  0.33722063 0.50438966
## age585+:as.factor(locsize01)2     LocationSize  0.13864549 0.50199641
## age555-59:as.factor(locsize01)3   LocationSize  0.13126026 1.14180519
## age560-64:as.factor(locsize01)3   LocationSize  0.99101354 1.03748214
## age565-69:as.factor(locsize01)3   LocationSize  0.97453327 1.02809571
## age570-74:as.factor(locsize01)3   LocationSize  0.94285502 1.02676216
## age575-79:as.factor(locsize01)3   LocationSize  0.70712372 1.02713505
## age580-84:as.factor(locsize01)3   LocationSize  0.81663155 1.02657457
## age585+:as.factor(locsize01)3     LocationSize  0.89010640 1.02368063
## age555-59:as.factor(locsize01)4   LocationSize  0.30836690 0.68141310
## age560-64:as.factor(locsize01)4   LocationSize  0.18104724 0.63916545
## age565-69:as.factor(locsize01)4   LocationSize  0.28566155 0.62550107
## age570-74:as.factor(locsize01)4   LocationSize  0.33822985 0.62314900
## age575-79:as.factor(locsize01)4   LocationSize  0.50259643 0.62146497
## age580-84:as.factor(locsize01)4   LocationSize  0.44258266 0.62219693
## age585+:as.factor(locsize01)4     LocationSize  0.38236244 0.61916594
##                                             HR     CI_Lower    CI_Upper
## (Intercept)                        0.007743835  0.004522425  0.01225314
## age555-59                          1.223274436  0.723871232  2.19394260
## age560-64                          2.489549066  1.542581278  4.32330239
## age565-69                          4.297198381  2.695571868  7.39736283
## age570-74                          5.244750436  3.294064342  9.02048246
## age575-79                          7.954142936  4.996964774 13.67806399
## age580-84                         12.227688764  7.671932380 21.04618426
## age585+                           21.778644908 13.702944021 37.40984304
## female                             0.985266129  0.482215254  2.00225172
## as.factor(educlevel)15             0.969800869  0.904030965  1.04048172
## as.factor(educlevel)68             0.916490523  0.839986656  0.99947150
## as.factor(educlevel)919            0.808740443  0.729487054  0.89557792
## as.factor(locsize01)2              0.980606288  0.902859334  1.06376186
## as.factor(locsize01)3              0.923017042  0.833794927  1.01958112
## as.factor(locsize01)4              0.860585002  0.792333988  0.93384869
## age555-59:female                   0.751373246  0.335768524  1.68593864
## age560-64:female                   0.750239518  0.357263232  1.58307935
## age565-69:female                   0.715937013  0.346499256  1.48689003
## age570-74:female                   0.738612796  0.358375816  1.53021001
## age575-79:female                   0.741514824  0.360202693  1.53447846
## age580-84:female                   0.755303143  0.366753980  1.56365032
## age585+:female                     0.942559700  0.459699074  1.94287148
## (Intercept)1                       0.010415828  0.003730565  0.02242859
## age555-591                         1.123670250  0.460742369  3.35525526
## age560-641                         1.722096314  0.763093583  4.93393471
## age565-691                         3.126047886  1.425386950  8.81725796
## age570-741                         3.875147881  1.776704782 10.89691711
## age575-791                         6.077377974  2.796787202 17.05432563
## age580-841                         8.413546170  3.872978698 23.60636571
## age585+1                          17.576736381  8.135054472 49.16729243
## female1                            0.776856977  0.733030150  0.82334837
## as.factor(educlevel)151            0.850854616  0.302349867  2.73173913
## as.factor(educlevel)681            0.757357814  0.261588461  2.46546207
## as.factor(educlevel)9191           0.558801630  0.178294205  1.88874058
## as.factor(locsize01)21             0.981647153  0.903766257  1.06495467
## as.factor(locsize01)31             0.920382265  0.831379236  1.01671835
## as.factor(locsize01)41             0.859087643  0.790930801  0.93225367
## age555-59:as.factor(educlevel)15   0.964014450  0.270878829  3.09368842
## age560-64:as.factor(educlevel)15   1.126537427  0.337344137  3.33281746
## age565-69:as.factor(educlevel)15   1.081558961  0.331127676  3.11065982
## age570-74:as.factor(educlevel)15   1.185880855  0.364725016  3.39106301
## age575-79:as.factor(educlevel)15   0.984396794  0.303333659  2.80805760
## age580-84:as.factor(educlevel)15   1.261281075  0.388910816  3.59491454
## age585+:as.factor(educlevel)15     1.171077811  0.362569400  3.32067273
## age555-59:as.factor(educlevel)68   0.758852982  0.205416844  2.55658791
## age560-64:as.factor(educlevel)68   1.423776854  0.419950249  4.33381488
## age565-69:as.factor(educlevel)68   1.246962385  0.375789155  3.69588023
## age570-74:as.factor(educlevel)68   1.078839678  0.325805518  3.18906461
## age575-79:as.factor(educlevel)68   1.204307716  0.364665814  3.54834669
## age580-84:as.factor(educlevel)68   1.219572936  0.368392223  3.60363511
## age585+:as.factor(educlevel)68     1.244038298  0.377657827  3.65382168
## age555-59:as.factor(educlevel)919  1.111775171  0.292007912  3.98540877
## age560-64:as.factor(educlevel)919  1.513433598  0.427924666  4.99328353
## age565-69:as.factor(educlevel)919  1.347671813  0.389728814  4.33377095
## age570-74:as.factor(educlevel)919  1.297417532  0.375996133  4.16172251
## age575-79:as.factor(educlevel)919  1.412598779  0.409620070  4.52771641
## age580-84:as.factor(educlevel)919  1.661423897  0.479754705  5.34931883
## age585+:as.factor(educlevel)919    1.658640953  0.481228086  5.31227630
## (Intercept)2                       0.009621989  0.006108451  0.01431843
## age555-592                         0.961655366  0.603720765  1.59277912
## age560-642                         1.946560221  1.282690705  3.11136280
## age565-692                         3.334193818  2.225197534  5.27895034
## age570-742                         4.126953166  2.758798534  6.52608261
## age575-792                         6.268922217  4.192833822  9.90945083
## age580-842                         9.252284901  6.179413631 14.64101719
## age585+2                          19.427378813 13.025095032 30.65377629
## female2                            0.778525908  0.734615458  0.82510475
## as.factor(educlevel)152            0.970850214  0.904925239  1.04170799
## as.factor(educlevel)682            0.918863341  0.842103228  1.00213416
## as.factor(educlevel)9192           0.809300093  0.729924279  0.89627871
## as.factor(locsize01)22             0.834415914  0.279413014  2.03534292
## as.factor(locsize01)32             0.389683862  0.021755547  1.85408753
## as.factor(locsize01)42             0.585828718  0.138619379  1.69148761
## age555-59:as.factor(locsize01)2    1.540161752  0.554420782  5.01305513
## age560-64:as.factor(locsize01)2    1.324835960  0.515472242  4.09617282
## age565-69:as.factor(locsize01)2    1.122215001  0.446677436  3.41784067
## age570-74:as.factor(locsize01)2    1.082995515  0.432522757  3.29102318
## age575-79:as.factor(locsize01)2    1.027612863  0.410921562  3.12010976
## age580-84:as.factor(locsize01)2    1.401048136  0.562566187  4.24251286
## age585+:as.factor(locsize01)2      1.148716794  0.463791011  3.46564143
## age555-59:as.factor(locsize01)3    1.140264513  0.158048705 22.94164780
## age560-64:as.factor(locsize01)3    2.693963536  0.534823541 49.09979546
## age565-69:as.factor(locsize01)3    2.649930131  0.541943453 47.86321338
## age570-74:as.factor(locsize01)3    2.567300655  0.527250492 46.31178372
## age575-79:as.factor(locsize01)3    2.028149343  0.416032246 36.59894907
## age580-84:as.factor(locsize01)3    2.262864634  0.465005995 40.81272242
## age585+:as.factor(locsize01)3      2.435388771  0.505020506 43.80295706
## age555-59:as.factor(locsize01)4    1.361200320  0.397719939  6.29769882
## age560-64:as.factor(locsize01)4    1.198471792  0.390450142  5.23577096
## age565-69:as.factor(locsize01)4    1.330642029  0.448747829  5.70598949
## age570-74:as.factor(locsize01)4    1.402462822  0.475770727  5.99469750
## age575-79:as.factor(locsize01)4    1.653007629  0.563139773  7.04940426
## age580-84:as.factor(locsize01)4    1.556722512  0.529370541  6.64544455
## age585+:as.factor(locsize01)4      1.465743226  0.502217696  6.23117035
##                                         p_value
## (Intercept)                        1.304171e-82
## age555-59                          4.728881e-01
## age560-64                          4.750619e-04
## age565-69                          1.183621e-08
## age570-74                          8.296124e-11
## age575-79                          4.268674e-16
## age580-84                          1.178243e-22
## age585+                            9.166039e-34
## female                             9.670453e-01
## as.factor(educlevel)15             3.924579e-01
## as.factor(educlevel)68             4.922644e-02
## as.factor(educlevel)919            4.963743e-05
## as.factor(locsize01)2              6.396568e-01
## as.factor(locsize01)3              1.184274e-01
## as.factor(locsize01)4              3.409886e-04
## age555-59:female                   4.844865e-01
## age560-64:female                   4.451285e-01
## age565-69:female                   3.637656e-01
## age570-74:female                   4.085753e-01
## age575-79:female                   4.138982e-01
## age580-84:female                   4.435142e-01
## age585+:female                     8.708782e-01
## (Intercept)1                       2.143388e-24
## age555-591                         8.138936e-01
## age560-641                         2.434241e-01
## age565-691                         1.223619e-02
## age570-741                         2.776370e-03
## age575-791                         6.387832e-05
## age580-841                         2.360921e-06
## age585+1                           1.744443e-10
## female1                            1.607884e-17
## as.factor(educlevel)151            7.680165e-01
## as.factor(educlevel)681            6.182641e-01
## as.factor(educlevel)9191           3.201708e-01
## as.factor(locsize01)21             6.581256e-01
## as.factor(locsize01)31             1.060064e-01
## as.factor(locsize01)41             2.921714e-04
## age555-59:as.factor(educlevel)15   9.521032e-01
## age560-64:as.factor(educlevel)15   8.348862e-01
## age565-69:as.factor(educlevel)15   8.882765e-01
## age570-74:as.factor(educlevel)15   7.588328e-01
## age575-79:as.factor(educlevel)15   9.773592e-01
## age580-84:as.factor(educlevel)15   6.750647e-01
## age585+:as.factor(educlevel)15     7.745031e-01
## age555-59:as.factor(educlevel)68   6.625540e-01
## age560-64:as.factor(educlevel)68   5.439963e-01
## age565-69:as.factor(educlevel)68   6.982410e-01
## age570-74:as.factor(educlevel)68   8.937173e-01
## age575-79:as.factor(educlevel)68   7.427414e-01
## age580-84:as.factor(educlevel)68   7.266581e-01
## age585+:as.factor(educlevel)68     6.990609e-01
## age555-59:as.factor(educlevel)919  8.713253e-01
## age560-64:as.factor(educlevel)919  4.982817e-01
## age565-69:as.factor(educlevel)919  6.182493e-01
## age570-74:as.factor(educlevel)919  6.629916e-01
## age575-79:as.factor(educlevel)919  5.629253e-01
## age580-84:as.factor(educlevel)919  3.970950e-01
## age585+:as.factor(educlevel)919    3.964871e-01
## (Intercept)2                      2.458064e-102
## age555-592                         8.737805e-01
## age560-642                         3.056961e-03
## age565-692                         3.957725e-08
## age570-742                         8.744486e-11
## age575-792                         4.128325e-17
## age580-842                         2.899235e-24
## age585+2                           1.808710e-42
## female2                            2.941813e-17
## as.factor(educlevel)152            4.099950e-01
## as.factor(educlevel)682            5.655446e-02
## as.factor(educlevel)9192           5.333703e-05
## as.factor(locsize01)22             7.147784e-01
## as.factor(locsize01)32             3.552221e-01
## as.factor(locsize01)42             3.844711e-01
## age555-59:as.factor(locsize01)2    4.333889e-01
## age560-64:as.factor(locsize01)2    5.870875e-01
## age565-69:as.factor(locsize01)2    8.204973e-01
## age570-74:as.factor(locsize01)2    8.749672e-01
## age575-79:as.factor(locsize01)2    9.570831e-01
## age580-84:as.factor(locsize01)2    5.037688e-01
## age585+:as.factor(locsize01)2      7.824035e-01
## age555-59:as.factor(locsize01)3    9.084780e-01
## age560-64:as.factor(locsize01)3    3.394714e-01
## age565-69:as.factor(locsize01)3    3.431797e-01
## age570-74:as.factor(locsize01)3    3.584724e-01
## age575-79:as.factor(locsize01)3    4.911740e-01
## age580-84:as.factor(locsize01)3    4.263275e-01
## age585+:as.factor(locsize01)3      3.845651e-01
## age555-59:as.factor(locsize01)4    6.508798e-01
## age560-64:as.factor(locsize01)4    7.769809e-01
## age565-69:as.factor(locsize01)4    6.478922e-01
## age570-74:as.factor(locsize01)4    5.872846e-01
## age575-79:as.factor(locsize01)4    4.186713e-01
## age580-84:as.factor(locsize01)4    4.768844e-01
## age585+:as.factor(locsize01)4      5.368757e-01

V.

Analyze and compare these different estimates, and conclude on which one would you use of them all and why.

The gender proportionality model has no significant interaction between age and gender (age5:female), suggesting the proportionality assumption holds for gender. Its AIC (30279.13) and BIC (30463.84) values indicate a reasonable fit. The education proportionality model shows similarly non-significant interactions (age5:as.factor(educlevel)), implying proportionality for education levels, but it has slightly higher AIC (30304.19) and BIC (30606.46). The location size model exhibits no significant interactions (age5:as.factor(locsize01)), supporting proportionality, with the lowest AIC (24418.55) and BIC (24720.89), indicating the best model fit.

Among these, the location size model is preferred due to its superior AIC/BIC values, demonstrating the best balance between model complexity and goodness of fit. However, the lack of significant interactions across all models suggests proportionality holds generally, and any of the models could be used depending on the research focus.