Import your data

data("mtcars")
mtcars < - as_tibble(mtcars)
##                       mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear
## Mazda RX4           FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Mazda RX4 Wag       FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Datsun 710          FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Hornet 4 Drive      FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Hornet Sportabout   FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Valiant             FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Duster 360          FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Merc 240D           FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Merc 230            FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Merc 280            FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Merc 280C           FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Merc 450SE          FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Merc 450SL          FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Merc 450SLC         FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Cadillac Fleetwood  FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Lincoln Continental FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Chrysler Imperial   FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Fiat 128            FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Honda Civic         FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Toyota Corolla      FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Toyota Corona       FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Dodge Challenger    FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## AMC Javelin         FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Camaro Z28          FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Pontiac Firebird    FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Fiat X1-9           FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Porsche 914-2       FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Lotus Europa        FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Ford Pantera L      FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Ferrari Dino        FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Maserati Bora       FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## Volvo 142E          FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##                      carb
## Mazda RX4           FALSE
## Mazda RX4 Wag       FALSE
## Datsun 710          FALSE
## Hornet 4 Drive      FALSE
## Hornet Sportabout   FALSE
## Valiant             FALSE
## Duster 360          FALSE
## Merc 240D           FALSE
## Merc 230            FALSE
## Merc 280            FALSE
## Merc 280C           FALSE
## Merc 450SE          FALSE
## Merc 450SL          FALSE
## Merc 450SLC         FALSE
## Cadillac Fleetwood  FALSE
## Lincoln Continental FALSE
## Chrysler Imperial   FALSE
## Fiat 128            FALSE
## Honda Civic         FALSE
## Toyota Corolla      FALSE
## Toyota Corona       FALSE
## Dodge Challenger    FALSE
## AMC Javelin         FALSE
## Camaro Z28          FALSE
## Pontiac Firebird    FALSE
## Fiat X1-9           FALSE
## Porsche 914-2       FALSE
## Lotus Europa        FALSE
## Ford Pantera L      FALSE
## Ferrari Dino        FALSE
## Maserati Bora       FALSE
## Volvo 142E          FALSE
scooby <- read_excel("../00_data/MyData.xlsx")

Repeat the same operation over different columns of a data frame

Case of numeric variables

mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(.f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
# Adding an argument
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% map_dbl (mean, trim = 0.1)
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% select(.data = .,mpg)
##                      mpg
## Mazda RX4           21.0
## Mazda RX4 Wag       21.0
## Datsun 710          22.8
## Hornet 4 Drive      21.4
## Hornet Sportabout   18.7
## Valiant             18.1
## Duster 360          14.3
## Merc 240D           24.4
## Merc 230            22.8
## Merc 280            19.2
## Merc 280C           17.8
## Merc 450SE          16.4
## Merc 450SL          17.3
## Merc 450SLC         15.2
## Cadillac Fleetwood  10.4
## Lincoln Continental 10.4
## Chrysler Imperial   14.7
## Fiat 128            32.4
## Honda Civic         30.4
## Toyota Corolla      33.9
## Toyota Corona       21.5
## Dodge Challenger    15.5
## AMC Javelin         15.2
## Camaro Z28          13.3
## Pontiac Firebird    19.2
## Fiat X1-9           27.3
## Porsche 914-2       26.0
## Lotus Europa        30.4
## Ford Pantera L      15.8
## Ferrari Dino        19.7
## Maserati Bora       15.0
## Volvo 142E          21.4
mtcars %>% select(mpg)
##                      mpg
## Mazda RX4           21.0
## Mazda RX4 Wag       21.0
## Datsun 710          22.8
## Hornet 4 Drive      21.4
## Hornet Sportabout   18.7
## Valiant             18.1
## Duster 360          14.3
## Merc 240D           24.4
## Merc 230            22.8
## Merc 280            19.2
## Merc 280C           17.8
## Merc 450SE          16.4
## Merc 450SL          17.3
## Merc 450SLC         15.2
## Cadillac Fleetwood  10.4
## Lincoln Continental 10.4
## Chrysler Imperial   14.7
## Fiat 128            32.4
## Honda Civic         30.4
## Toyota Corolla      33.9
## Toyota Corona       21.5
## Dodge Challenger    15.5
## AMC Javelin         15.2
## Camaro Z28          13.3
## Pontiac Firebird    19.2
## Fiat X1-9           27.3
## Porsche 914-2       26.0
## Lotus Europa        30.4
## Ford Pantera L      15.8
## Ferrari Dino        19.7
## Maserati Bora       15.0
## Volvo 142E          21.4

Create your own function

# Double values in columns
double_by_factor <- function(x, factor) {x * factor}
10 %>% double_by_factor(factor = 2)
## [1] 20
mtcars %>% map_dfr(.x = ., .f = ~double_by_factor(x = .x, factor = 10))
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows
mtcars %>% map_dfr(double_by_factor, factor = 10)
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows

Repeat the same operation over different elements of a list

When you have a grouping variable (factor)

mtcars %>% lm(formula = mpg ~ wt, data = .)
## 
## Call:
## lm(formula = mpg ~ wt, data = .)
## 
## Coefficients:
## (Intercept)           wt  
##      37.285       -5.344
mtcars %>% distinct(cyl)
##                   cyl
## Mazda RX4           6
## Datsun 710          4
## Hornet Sportabout   8
reg_coeff_tbl <- mtcars %>% 
    
    # Split it into a list of data frames
    split(.$cyl) %>%
    
    # Repeat regression over each group
    map(~lm(formula = mpg ~ wt, data = .x)) %>%
    
    # Extract coefficients from regression results
    map(broom::tidy, conf.int = TRUE) %>%
    
    # Convert to tibble
    bind_rows(.id = "cyl") %>%
    
    # Filter for wt coefficients
    filter(term == "wt")
reg_coeff_tbl %>% 
    
    mutate(estimate = -estimate, 
           conf.low = -conf.low,
           conf.high = -conf.high) %>%
    
    ggplot(aes(x = -estimate, y = cyl)) +
    geom_point() +
    geom_errorbar(aes(xmin = conf.low, xmax = conf.high))

Create your own

Choose either one of the two cases above and apply it to your data

scooby %>% lm(formula = run_time ~ imdb, data = .)
## 
## Call:
## lm(formula = run_time ~ imdb, data = .)
## 
## Coefficients:
## (Intercept)         imdb  
##      56.921       -4.584
scooby %>% distinct(season)
## # A tibble: 7 × 1
##   season   
##   <chr>    
## 1 1        
## 2 2        
## 3 Crossover
## 4 3        
## 5 Movie    
## 6 Special  
## 7 4
new_coeff_tbl <- scooby %>% 
    
    split(.$season) %>%
    
    map(~lm(formula = run_time ~ imdb, data = .x)) %>%
    
    map(broom::tidy, conf.int = TRUE) %>%
    
    bind_rows(.id = "season") %>%
    
    filter(term == "imdb")
new_coeff_tbl %>% 
    
    mutate(estimate = -estimate, 
           conf.low = -conf.low,
           conf.high = -conf.high) %>%
    
    ggplot(aes(x = -estimate, y = season)) +
    geom_point() +
    geom_errorbar(aes(xmin = conf.low, xmax = conf.high))