Soal Latihan Aljabar Linear

Pertemuan 9

Perkalian Matriks 2D

Soal 1

Diberikan dua matriks \(A\) dan \(B\):
\[ A = \begin{bmatrix} \lambda & 2 \\ 3 & \lambda \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 4 \\ 2 & \lambda \end{bmatrix} \]

Hitunglah hasil perkalian \(A \cdot B\) dan tentukan persamaan yang terbentuk dari elemen-elemen matriks hasil perkalian tersebut.


Soal 2

Diberikan dua matriks \(C\) dan \(D\):
\[ C = \begin{bmatrix} \lambda+1 & 3 \\ 2 & \lambda-1 \end{bmatrix}, \quad D = \begin{bmatrix} 4 &\lambda \\ 1 & 5 \end{bmatrix} \]

Hitunglah hasil perkalian \(C \cdot D\) dan tentukan persamaan kuadrat yang terbentuk dari elemen-elemen matriks hasil perkalian tersebut.


Soal 3

Diberikan dua matriks \(E\) dan \(F\):
\[ E = \begin{bmatrix} x & 1 \\ 4 & x-2 \end{bmatrix}, \quad F = \begin{bmatrix} 3 & x \\ 2 & 4 \end{bmatrix} \]

Hitunglah hasil perkalian \(E \cdot F\) dan tentukan persamaan kuadrat yang terbentuk dari elemen-elemen matriks hasil perkalian tersebut.

Determinan Matriks 2D

Soal 7

Diberikan matriks \(G\):

\[ G = \begin{bmatrix} 6 & 2 \\ 4 & 3 \end{bmatrix} \]

Hitunglah determinan dari matriks \(G\)!


Soal 8

Diberikan matriks \(H\):
\[ H = \begin{bmatrix} \lambda & 2 \\ 3 & \lambda \end{bmatrix} \]

Hitung determinan dari matriks \(H\), kemudian tentukan nilai \(\lambda\) jika determinan tersebut sama dengan nol.

Soal 9

Diberikan matriks \(I\):
\[ I = \begin{bmatrix} \lambda + 2 & 5 \\ 4 & \lambda - 3 \end{bmatrix} \]

Hitung determinan dari matriks \(I\), kemudian tentukan nilai \(\lambda\) jika determinan tersebut sama dengan nol.

Determinan Matriks 3D

Soal 10

Diberikan matriks \(J\):
\[ J = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \]

Hitunglah determinan dari matriks \(J\) menggunakan ekspansi kofaktor!


Soal 11

Diberikan matriks \(K\):

\[ K = \begin{bmatrix} \lambda & 1 & 2 \\ 0 & \lambda & 3 \\ 1 & 2 & \lambda \end{bmatrix} \]

Hitung determinan dari matriks \(K\), kemudian tentukan nilai \(\lambda\) jika determinan tersebut sama dengan nol.


Soal 12

Diberikan matriks \(L\):
\[ L = \begin{bmatrix} 2 & 4 & \lambda \\ 1 & \lambda & 5 \\ \lambda & 3 & 6 \end{bmatrix} \]

Hitung determinan dari matriks \(L\), kemudian tentukan nilai \(\lambda\) jika determinan tersebut sama dengan nol.

Invers Matriks 2D

Soal 13

Diberikan matriks \(M\):
\[ M = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix} \]

Hitunglah invers dari matriks \(M\), jika ada.


Soal 14

Diberikan matriks \(N\):
\[ N = \begin{bmatrix} x & 5 \\ 1 & 2 \end{bmatrix} \]

Hitunglah invers dari matriks \(N\), jika ada, dan tentukan nilai \(x\) agar matriks \(B\) memiliki invers.


Soal 15

Diberikan matriks \(O\):
\[ O = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \]

Hitunglah invers dari matriks \(O\), jika ada.

Invers Matriks 3D

Soal 16

Diberikan matriks \(P\):
\[ P = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix} \]

Hitunglah invers dari matriks \(P\), jika ada.


Soal 17

Diberikan matriks \(Q\):
\[ Q = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 3 & 2 \\ 0 & 1 & 4 \end{bmatrix} \]

Hitunglah invers dari matriks \(Q\), jika ada.


Soal 18

Diberikan matriks \(R\):
\[ R = \begin{bmatrix} x & 1 & 2 \\ 0 & x & 3 \\ 4 & 5 & x \end{bmatrix} \]

Hitunglah invers dari matriks \(R\), jika ada, dan tentukan nilai \(x\) agar matriks \(R\) memiliki invers.

Sistem Persamaan Linear 2D

Soal 19

Diberikan sistem persamaan linear berikut:
\[ \begin{aligned} 3x + 2y &= 8, \\ 5x - y &= 7. \end{aligned} \]

Selesaikan sistem persamaan tersebut menggunakan metode eliminasi atau substitusi.


Soal 20

Diberikan sistem persamaan linear berikut:
\[ \begin{aligned} 2x - 3y &= 5, \\ 4x + y &= 11. \end{aligned} \]

Selesaikan sistem persamaan tersebut menggunakan metode matriks atau metode substitusi.


Soal 21

Diberikan sistem persamaan linear berikut:
\[ \begin{aligned} x + 4y &= 12, \\ 3x - 2y &= 4. \end{aligned} \]

Selesaikan sistem persamaan tersebut dengan metode eliminasi atau substitusi.

Sistem Persamaan Linear 3D

Soal 22

Diberikan sistem persamaan linear berikut:
\[ \begin{aligned} x + 2y + 3z &= 9, \\ 4x + 5y + 6z &= 22, \\ 7x + 8y + 9z &= 39. \end{aligned} \]

Selesaikan sistem persamaan tersebut menggunakan metode eliminasi atau metode invers matriks.


Soal 23

Diberikan sistem persamaan linear berikut:
\[ \begin{aligned} 2x - y + 3z &= 7, \\ x + 4y + z &= 4, \\ 3x - 2y + 2z &= 5. \end{aligned} \]

Selesaikan sistem persamaan tersebut menggunakan metode substitusi atau metode invers matriks.


Soal 24

Diberikan sistem persamaan linear berikut:
\[ \begin{aligned} x + y + z &= 6, \\ 2x + 3y - z &= 3, \\ 4x - y + 2z &= 8. \end{aligned} \]

Selesaikan sistem persamaan tersebut menggunakan metode eliminasi atau metode invers matriks.

LS0tCnRpdGxlOiAiU29hbCBMYXRpaGFuIEFsamFiYXIgTGluZWFyIgpzdWJ0aXRsZTogIlBlcnRlbXVhbiA5IgphdXRob3I6ICJCYWt0aSBTaXJlZ2FyLCBTLlNpLiwgTS5TYyIKZGF0ZTogICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCIKb3V0cHV0OgogIHJtZGZvcm1hdHM6OnJlYWR0aGVkb3duOiAgICMgaHR0cHM6Ly9naXRodWIuY29tL2p1YmEvcm1kZm9ybWF0cwogICAgc2VsZl9jb250YWluZWQ6IHRydWUKICAgIHRodW1ibmFpbHM6IHRydWUKICAgIGxpZ2h0Ym94OiB0cnVlCiAgICBnYWxsZXJ5OiB0cnVlCiAgICBsaWJfZGlyOiBsaWJzCiAgICBkZl9wcmludDogInBhZ2VkIgogICAgY29kZV9mb2xkaW5nOiAic2hvdyIKICAgIGNvZGVfZG93bmxvYWQ6IHllcwogICAgY3NzOiAic3R5bGUuY3NzIgotLS0KCjxpbWcgc3JjPSJodHRwczovL2dpdGh1Yi5jb20vZHNjaWVuY2VsYWJzL2ltYWdlcy9ibG9iL21hc3Rlci9Db3Zlcl9MaW5BLnBuZz9yYXc9dHJ1ZSIgd2lkdGg9IjMwMCIgc3R5bGU9ImRpc3BsYXk6IGJsb2NrOyBtYXJnaW46IGF1dG87IiBhbHQ9IiI+CgojIFBlcmthbGlhbiBNYXRyaWtzIDJECgojIyBTb2FsIDEgIAoKRGliZXJpa2FuIGR1YSBtYXRyaWtzICRBJCBkYW4gJEIkOiAgCiQkCkEgPSBcYmVnaW57Ym1hdHJpeH0gXGxhbWJkYSAmIDIgXFwgMyAmIFxsYW1iZGEgXGVuZHtibWF0cml4fSwgXHF1YWQgQiA9IFxiZWdpbntibWF0cml4fSAxICYgNCBcXCAyICYgXGxhbWJkYSBcZW5ke2JtYXRyaXh9CiQkICAKCkhpdHVuZ2xhaCBoYXNpbCBwZXJrYWxpYW4gJEEgXGNkb3QgQiQgZGFuIHRlbnR1a2FuIHBlcnNhbWFhbiB5YW5nIHRlcmJlbnR1ayBkYXJpIGVsZW1lbi1lbGVtZW4gbWF0cmlrcyBoYXNpbCBwZXJrYWxpYW4gdGVyc2VidXQuCgotLS0KCiMjIFNvYWwgMiAgCgpEaWJlcmlrYW4gZHVhIG1hdHJpa3MgJEMkIGRhbiAkRCQ6ICAKJCQKQyA9IFxiZWdpbntibWF0cml4fSBcbGFtYmRhKzEgJiAzIFxcIDIgJiBcbGFtYmRhLTEgXGVuZHtibWF0cml4fSwgXHF1YWQgRCA9IFxiZWdpbntibWF0cml4fSA0ICZcbGFtYmRhIFxcIDEgJiA1IFxlbmR7Ym1hdHJpeH0KJCQgIAoKSGl0dW5nbGFoIGhhc2lsIHBlcmthbGlhbiAkQyBcY2RvdCBEJCBkYW4gdGVudHVrYW4gcGVyc2FtYWFuIGt1YWRyYXQgeWFuZyB0ZXJiZW50dWsgZGFyaSBlbGVtZW4tZWxlbWVuIG1hdHJpa3MgaGFzaWwgcGVya2FsaWFuIHRlcnNlYnV0LgoKLS0tCgojIyBTb2FsIDMgIAoKRGliZXJpa2FuIGR1YSBtYXRyaWtzICRFJCBkYW4gJEYkOiAgCiQkCkUgPSBcYmVnaW57Ym1hdHJpeH0geCAmIDEgXFwgNCAmIHgtMiBcZW5ke2JtYXRyaXh9LCBccXVhZCBGID0gXGJlZ2lue2JtYXRyaXh9IDMgJiB4IFxcIDIgJiA0IFxlbmR7Ym1hdHJpeH0KJCQgIAoKSGl0dW5nbGFoIGhhc2lsIHBlcmthbGlhbiAkRSBcY2RvdCBGJCBkYW4gdGVudHVrYW4gcGVyc2FtYWFuIGt1YWRyYXQgeWFuZyB0ZXJiZW50dWsgZGFyaSBlbGVtZW4tZWxlbWVuIG1hdHJpa3MgaGFzaWwgcGVya2FsaWFuIHRlcnNlYnV0LgoKCiMgRGV0ZXJtaW5hbiBNYXRyaWtzIDJECgojIyBTb2FsIDcKCkRpYmVyaWthbiBtYXRyaWtzICRHJDogCgokJApHID0gXGJlZ2lue2JtYXRyaXh9IDYgJiAyIFxcIDQgJiAzIFxlbmR7Ym1hdHJpeH0KJCQgIAoKSGl0dW5nbGFoIGRldGVybWluYW4gZGFyaSBtYXRyaWtzICRHJCEgIAoKLS0tCgojIyBTb2FsIDggIAoKRGliZXJpa2FuIG1hdHJpa3MgJEgkOiAgCiQkCkggPSBcYmVnaW57Ym1hdHJpeH0gXGxhbWJkYSAmIDIgXFwgMyAmIFxsYW1iZGEgXGVuZHtibWF0cml4fQokJCAgCgpIaXR1bmcgZGV0ZXJtaW5hbiBkYXJpIG1hdHJpa3MgJEgkLCBrZW11ZGlhbiB0ZW50dWthbiBuaWxhaSAkXGxhbWJkYSQgamlrYSBkZXRlcm1pbmFuIHRlcnNlYnV0IHNhbWEgZGVuZ2FuIG5vbC4gIAoKIyMgU29hbCA5ICAKCkRpYmVyaWthbiBtYXRyaWtzICRJJDogIAokJApJID0gXGJlZ2lue2JtYXRyaXh9IFxsYW1iZGEgKyAyICYgNSBcXCA0ICYgXGxhbWJkYSAtIDMgXGVuZHtibWF0cml4fQokJCAgCgpIaXR1bmcgZGV0ZXJtaW5hbiBkYXJpIG1hdHJpa3MgJEkkLCBrZW11ZGlhbiB0ZW50dWthbiBuaWxhaSAkXGxhbWJkYSQgamlrYSBkZXRlcm1pbmFuIHRlcnNlYnV0IHNhbWEgZGVuZ2FuIG5vbC4gCgojIERldGVybWluYW4gTWF0cmlrcyAzRAoKIyMgU29hbCAxMCAgCgpEaWJlcmlrYW4gbWF0cmlrcyAkSiQ6ICAKJCQKSiA9IFxiZWdpbntibWF0cml4fSAxICYgMiAmIDMgXFwgNCAmIDUgJiA2IFxcIDcgJiA4ICYgOSBcZW5ke2JtYXRyaXh9CiQkICAKCkhpdHVuZ2xhaCBkZXRlcm1pbmFuIGRhcmkgbWF0cmlrcyAkSiQgbWVuZ2d1bmFrYW4gZWtzcGFuc2kga29mYWt0b3IhICAKCi0tLQoKIyMgU29hbCAxMSAgCgpEaWJlcmlrYW4gbWF0cmlrcyAkSyQ6CgokJApLID0gXGJlZ2lue2JtYXRyaXh9IFxsYW1iZGEgJiAxICYgMiBcXCAwICYgXGxhbWJkYSAmIDMgXFwgMSAmIDIgJiBcbGFtYmRhIFxlbmR7Ym1hdHJpeH0KJCQgIAoKSGl0dW5nIGRldGVybWluYW4gZGFyaSBtYXRyaWtzICRLJCwga2VtdWRpYW4gdGVudHVrYW4gbmlsYWkgJFxsYW1iZGEkIGppa2EgZGV0ZXJtaW5hbiB0ZXJzZWJ1dCBzYW1hIGRlbmdhbiBub2wuICAKCi0tLQoKIyMgU29hbCAxMiAgCgpEaWJlcmlrYW4gbWF0cmlrcyAkTCQ6ICAKJCQKTCA9IFxiZWdpbntibWF0cml4fSAyICYgNCAmIFxsYW1iZGEgXFwgMSAmIFxsYW1iZGEgJiA1IFxcIFxsYW1iZGEgJiAzICYgNiBcZW5ke2JtYXRyaXh9CiQkICAKCkhpdHVuZyBkZXRlcm1pbmFuIGRhcmkgbWF0cmlrcyAkTCQsIGtlbXVkaWFuIHRlbnR1a2FuIG5pbGFpICRcbGFtYmRhJCBqaWthIGRldGVybWluYW4gdGVyc2VidXQgc2FtYSBkZW5nYW4gbm9sLiAgCgojIEludmVycyBNYXRyaWtzIDJECgojIyBTb2FsIDEzICAKCkRpYmVyaWthbiBtYXRyaWtzICRNJDogIAokJApNID0gXGJlZ2lue2JtYXRyaXh9IDMgJiA0IFxcIDIgJiAxIFxlbmR7Ym1hdHJpeH0KJCQgIAoKSGl0dW5nbGFoIGludmVycyBkYXJpIG1hdHJpa3MgJE0kLCBqaWthIGFkYS4gIAoKLS0tCgojIyBTb2FsIDE0IAoKRGliZXJpa2FuIG1hdHJpa3MgJE4kOiAgCiQkCk4gPSBcYmVnaW57Ym1hdHJpeH0geCAmIDUgXFwgMSAmIDIgXGVuZHtibWF0cml4fQokJCAgCgpIaXR1bmdsYWggaW52ZXJzIGRhcmkgbWF0cmlrcyAkTiQsIGppa2EgYWRhLCBkYW4gdGVudHVrYW4gbmlsYWkgJHgkIGFnYXIgbWF0cmlrcyAkQiQgbWVtaWxpa2kgaW52ZXJzLiAgCgotLS0KCiMjIFNvYWwgMTUgIAoKRGliZXJpa2FuIG1hdHJpa3MgJE8kOiAgCiQkCk8gPSBcYmVnaW57Ym1hdHJpeH0gMSAmIDMgXFwgMiAmIDUgXGVuZHtibWF0cml4fQokJCAgCgpIaXR1bmdsYWggaW52ZXJzIGRhcmkgbWF0cmlrcyAkTyQsIGppa2EgYWRhLiAgCgojIEludmVycyBNYXRyaWtzIDNECgojIyBTb2FsIDE2ICAKCkRpYmVyaWthbiBtYXRyaWtzICRQJDogIAokJApQID0gXGJlZ2lue2JtYXRyaXh9IDEgJiAyICYgMyBcXCAwICYgMSAmIDQgXFwgNSAmIDYgJiAwIFxlbmR7Ym1hdHJpeH0KJCQgIAoKSGl0dW5nbGFoIGludmVycyBkYXJpIG1hdHJpa3MgJFAkLCBqaWthIGFkYS4gIAoKLS0tCgojIyBTb2FsIDE3ICAKCkRpYmVyaWthbiBtYXRyaWtzICRRJDogIAokJApRID0gXGJlZ2lue2JtYXRyaXh9IDIgJiAwICYgMSBcXCAxICYgMyAmIDIgXFwgMCAmIDEgJiA0IFxlbmR7Ym1hdHJpeH0KJCQgIAoKSGl0dW5nbGFoIGludmVycyBkYXJpIG1hdHJpa3MgJFEkLCBqaWthIGFkYS4gIAoKLS0tCgojIyBTb2FsIDE4ICAKCkRpYmVyaWthbiBtYXRyaWtzICRSJDogIAokJApSID0gXGJlZ2lue2JtYXRyaXh9IHggJiAxICYgMiBcXCAwICYgeCAmIDMgXFwgNCAmIDUgJiB4IFxlbmR7Ym1hdHJpeH0KJCQgIAoKSGl0dW5nbGFoIGludmVycyBkYXJpIG1hdHJpa3MgJFIkLCBqaWthIGFkYSwgZGFuIHRlbnR1a2FuIG5pbGFpICR4JCBhZ2FyIG1hdHJpa3MgJFIkIG1lbWlsaWtpIGludmVycy4gIAoKIyBTaXN0ZW0gUGVyc2FtYWFuIExpbmVhciAyRAoKIyMgU29hbCAxOSAgCgpEaWJlcmlrYW4gc2lzdGVtIHBlcnNhbWFhbiBsaW5lYXIgYmVyaWt1dDogIAokJApcYmVnaW57YWxpZ25lZH0KM3ggKyAyeSAmPSA4LCBcXAo1eCAtIHkgJj0gNy4KXGVuZHthbGlnbmVkfQokJCAgCgpTZWxlc2Fpa2FuIHNpc3RlbSBwZXJzYW1hYW4gdGVyc2VidXQgbWVuZ2d1bmFrYW4gbWV0b2RlIGVsaW1pbmFzaSBhdGF1IHN1YnN0aXR1c2kuICAKCi0tLQoKIyMgU29hbCAyMCAgCgpEaWJlcmlrYW4gc2lzdGVtIHBlcnNhbWFhbiBsaW5lYXIgYmVyaWt1dDogIAokJApcYmVnaW57YWxpZ25lZH0KMnggLSAzeSAmPSA1LCBcXAo0eCArIHkgJj0gMTEuClxlbmR7YWxpZ25lZH0KJCQgIAoKU2VsZXNhaWthbiBzaXN0ZW0gcGVyc2FtYWFuIHRlcnNlYnV0IG1lbmdndW5ha2FuIG1ldG9kZSBtYXRyaWtzIGF0YXUgbWV0b2RlIHN1YnN0aXR1c2kuICAKCi0tLQoKIyMgU29hbCAyMSAgCgpEaWJlcmlrYW4gc2lzdGVtIHBlcnNhbWFhbiBsaW5lYXIgYmVyaWt1dDogIAokJApcYmVnaW57YWxpZ25lZH0KeCArIDR5ICY9IDEyLCBcXAozeCAtIDJ5ICY9IDQuClxlbmR7YWxpZ25lZH0KJCQgIAoKU2VsZXNhaWthbiBzaXN0ZW0gcGVyc2FtYWFuIHRlcnNlYnV0IGRlbmdhbiBtZXRvZGUgZWxpbWluYXNpIGF0YXUgc3Vic3RpdHVzaS4gIAoKIyBTaXN0ZW0gUGVyc2FtYWFuIExpbmVhciAzRAoKIyMgU29hbCAyMiAgCgpEaWJlcmlrYW4gc2lzdGVtIHBlcnNhbWFhbiBsaW5lYXIgYmVyaWt1dDogIAokJApcYmVnaW57YWxpZ25lZH0KeCArIDJ5ICsgM3ogJj0gOSwgXFwKNHggKyA1eSArIDZ6ICY9IDIyLCBcXAo3eCArIDh5ICsgOXogJj0gMzkuClxlbmR7YWxpZ25lZH0KJCQgIAoKU2VsZXNhaWthbiBzaXN0ZW0gcGVyc2FtYWFuIHRlcnNlYnV0IG1lbmdndW5ha2FuIG1ldG9kZSBlbGltaW5hc2kgYXRhdSBtZXRvZGUgaW52ZXJzIG1hdHJpa3MuICAKCi0tLQoKIyMgU29hbCAyMyAgCgpEaWJlcmlrYW4gc2lzdGVtIHBlcnNhbWFhbiBsaW5lYXIgYmVyaWt1dDogIAokJApcYmVnaW57YWxpZ25lZH0KMnggLSB5ICsgM3ogJj0gNywgXFwKeCArIDR5ICsgeiAmPSA0LCBcXAozeCAtIDJ5ICsgMnogJj0gNS4KXGVuZHthbGlnbmVkfQokJCAgCgpTZWxlc2Fpa2FuIHNpc3RlbSBwZXJzYW1hYW4gdGVyc2VidXQgbWVuZ2d1bmFrYW4gbWV0b2RlIHN1YnN0aXR1c2kgYXRhdSBtZXRvZGUgaW52ZXJzIG1hdHJpa3MuICAKCi0tLQoKIyMgU29hbCAyNCAgCgpEaWJlcmlrYW4gc2lzdGVtIHBlcnNhbWFhbiBsaW5lYXIgYmVyaWt1dDogIAokJApcYmVnaW57YWxpZ25lZH0KeCArIHkgKyB6ICY9IDYsIFxcCjJ4ICsgM3kgLSB6ICY9IDMsIFxcCjR4IC0geSArIDJ6ICY9IDguClxlbmR7YWxpZ25lZH0KJCQgIAoKU2VsZXNhaWthbiBzaXN0ZW0gcGVyc2FtYWFuIHRlcnNlYnV0IG1lbmdndW5ha2FuIG1ldG9kZSBlbGltaW5hc2kgYXRhdSBtZXRvZGUgaW52ZXJzIG1hdHJpa3Mu