Statistic <- c(68, 85, 74, 88, 63, 78, 90, 80, 58, 63)
Math <- c(85, 91, 74, 100, 82, 84, 78, 100, 51, 70)


plot(
  x = Statistic, 
  y = Math, 
  main = "班上的統計成績與數學成績", 
  xlab = "統計成績", 
  ylab = "數學成績", 
  pch = 10, 
  col = "lightblue", 
  cex = 1.5 
)

# Add grid lines
grid()

Statistic <- c(68, 85, 74, 88, 63, 78, 90, 80, 58, 63)


hist(
  Statistic,
  main = "班上的體重與身高",  
  xlab = "體重",  
  ylab = "次數",  
  col = "lightyellow",  
  border = "black", 
  breaks = seq(55, 90, by = 5), 
  cex.main = 1.5,  
  cex.lab = 1.2,  
  cex.axis = 1.1 
)

coding <- c("5", "4", "3", "2", "1")
frequencies <- c(185, 82, 36, 28, 25)


barplot(
  frequencies, 
  names.arg = coding, 
  main = "頻數長條圖", 
  xlab = "分類", 
  ylab = "頻數", 
  col = "lightblue", 
  border = "black", 
  cex.main = 1.5, 
  cex.lab = 1.2,
  cex.axis = 1.1 
)

coding <- c("5", "4", "3", "2", "1")
frequencies <- c(185, 82, 36, 28, 25)


pie(
  frequencies, 
  labels = coding, 
  main = "頻數圓餅圖", 
  col = c("blue", "green", "yellow", "pink", "gray"), 
  border = "black", 
  cex.main = 1.5, 
  cex.lab = 1.2 
)

data2 <- read.csv("D:/table1_1.csv")
print(data2)
##      Name Statistic Math Japanese Management Accounting
## 1  張青松        68   85       84         89         86
## 2  王奕翔        85   91       63         76         66
## 3  田新雨        74   74       61         80         69
## 4  徐麗娜        88  100       49         71         66
## 5  張志傑        63   82       89         78         80
## 6  趙穎睿        78   84       51         60         60
## 7  王智強        90   78       59         72         66
## 8  宋媛婷        80  100       53         73         70
## 9  袁四方        58   51       79         91         85
## 10 張建國        63   70       91         85         82
stem(data2$Japanese)
## 
##   The decimal point is 1 digit(s) to the right of the |
## 
##   4 | 9
##   5 | 139
##   6 | 13
##   7 | 9
##   8 | 49
##   9 | 1
data <- read.csv("D:/table1_1.csv")
japanese_data <- data$Japanese
mean_japanese <- mean(japanese_data, na.rm = TRUE)
median_japanese <- median(japanese_data, na.rm = TRUE)
getmode <- function(v) {
  uniqv <- unique(v)
  uniqv[which.max(tabulate(match(v, uniqv)))]
}
mode_japanese <- getmode(japanese_data)

sd_japanese <- sd(japanese_data, na.rm = TRUE)

variance_japanese <- var(japanese_data, na.rm = TRUE)

q1_japanese <- quantile(japanese_data, 0.25, na.rm = TRUE)

cat("1. 平均數 (Mean):", mean_japanese, "\n")
## 1. 平均數 (Mean): 67.9
cat("2. 中位數 (Median):", median_japanese, "\n")
## 2. 中位數 (Median): 62
cat("3. 眾數 (Mode):", mode_japanese, "\n")
## 3. 眾數 (Mode): 84
cat("4. 標準差 (Standard Deviation):", sd_japanese, "\n")
## 4. 標準差 (Standard Deviation): 16.25115
cat("5. 變異數 (Variance):", variance_japanese, "\n")
## 5. 變異數 (Variance): 264.1
cat("6. Q1 第一四分位數 (Q1):", q1_japanese, "\n")
## 6. Q1 第一四分位數 (Q1): 54.5
data <- read.csv("D:/table1_1.csv")
japanese_data <- data$Japanese
mean_japanese <- mean(japanese_data, na.rm = TRUE)
median_japanese <- median(japanese_data, na.rm = TRUE)
getmode <- function(v) {
  uniqv <- unique(v)
  uniqv[which.max(tabulate(match(v, uniqv)))]
}
mode_japanese <- getmode(japanese_data)
sd_japanese <- sd(japanese_data, na.rm = TRUE)
variance_japanese <- var(japanese_data, na.rm = TRUE)
q1_japanese <- quantile(japanese_data, 0.25, na.rm = TRUE)
q3_japanese <- quantile(japanese_data, 0.75, na.rm = TRUE)
cat("1. 平均數 (Mean):", mean_japanese, "\n")
## 1. 平均數 (Mean): 67.9
cat("2. 中位數 (Median):", median_japanese, "\n")
## 2. 中位數 (Median): 62
cat("3. 眾數 (Mode):", mode_japanese, "\n")
## 3. 眾數 (Mode): 84
cat("4. 標準差 (Standard Deviation):", sd_japanese, "\n")
## 4. 標準差 (Standard Deviation): 16.25115
cat("5. 變異數 (Variance):", variance_japanese, "\n")
## 5. 變異數 (Variance): 264.1
cat("6. Q1 第一四分位數 (Q1):", q1_japanese, "\n")
## 6. Q1 第一四分位數 (Q1): 54.5
cat("7. Q3 第三四分位數 (Q3):", q3_japanese, "\n")
## 7. Q3 第三四分位數 (Q3): 82.75