Import your data

data("mtcars")
mtcars <- as_tibble(mtcars)

mydata <- read_xlsx("../00_data/data/myData.xlsx")
mydata
## # A tibble: 500 × 21
##    sort_name      clean_name    album rank_2003 rank_2012 rank_2020 differential
##    <chr>          <chr>         <chr>     <dbl>     <dbl>     <dbl>        <dbl>
##  1 Beatles        The Beatles   Sgt.…         1         1        24          -23
##  2 Beach Boys     The Beach Bo… Pet …         2         2         2            0
##  3 Beatles        The Beatles   Revo…         3         3        11           -8
##  4 Dylan, Bob     Bob Dylan     High…         4         4        18          -14
##  5 Beatles        The Beatles   Rubb…         5         5        35          -30
##  6 Gaye, Marvin   Marvin Gaye   What…         6         6         1            5
##  7 Rolling Stones Rolling Ston… Exil…         7         7        14           -7
##  8 Clash          The Clash     Lond…         8         8        16           -8
##  9 Dylan, Bob     Bob Dylan     Blon…         9         9        38          -29
## 10 Beatles        The Beatles   The …        10        10        29          -19
## # ℹ 490 more rows
## # ℹ 14 more variables: release_year <dbl>, genre <chr>, type <chr>,
## #   weeks_on_billboard <dbl>, peak_billboard_position <dbl>,
## #   spotify_popularity <dbl>, spotify_url <chr>, artist_member_count <dbl>,
## #   artist_gender <chr>, artist_birth_year_sum <dbl>,
## #   debut_album_release_year <dbl>, ave_age_at_top_500 <dbl>,
## #   years_between <dbl>, album_id <chr>

Repeat the same operation over different columns of a data frame

Case of numeric variables

mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(.f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map_dbl(mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
# Adding an Argument
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% map_dbl(mean, trim = 0.1)
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% select(.data = .,mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # ℹ 22 more rows
mtcars %>% select(mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # ℹ 22 more rows

Create your own function

#Double Values in Columns
double_by_factor <- function(x, factor){x * factor}
10 %>% double_by_factor(factor = 2)
## [1] 20
mtcars %>% map_dfr(.x = ., .f = ~double_by_factor(x = .x, factor = 10))
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows
mtcars %>% map_dfr(double_by_factor, factor = 10)
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # ℹ 22 more rows

Repeat the same operation over different elements of a list

When you have a grouping variable (factor)

mtcars %>% lm(formula = mpg ~ wt, data = .)
## 
## Call:
## lm(formula = mpg ~ wt, data = .)
## 
## Coefficients:
## (Intercept)           wt  
##      37.285       -5.344
mtcars %>% distinct(cyl)
## # A tibble: 3 × 1
##     cyl
##   <dbl>
## 1     6
## 2     4
## 3     8
reg_coeff_tbl <- mtcars %>%
    
    #Split into list of data frames
    split(.$cyl) %>%
                  
    #Repeat regression over each group
    map(~lm(formula = mpg ~ wt, data = .x)) %>%
        
    #Extract Coefficient from regression results
    map(broom::tidy, conf.int = TRUE) %>%
    
    #Convert to Tibble
    bind_rows(.id = "cyl") %>%
    
    #Filter for wt coefficients
    filter(term == "wt")
reg_coeff_tbl %>%
    
    mutate(estimate = -estimate,
           conf.low = -conf.low,
           conf.high = -conf.high) %>%
    
    ggplot(aes(x = estimate, y = cyl)) +
    geom_point() +
    geom_errorbar(aes(xmin = conf.low, xmax = conf.high))

Create your own

Choose either one of the two cases above and apply it to your data

# Collapse genres into broader categories and count them
collapsed_data <- mydata %>%
    mutate(genre = fct_collapse(genre,
                                `Rock & Alternative` = c("Blues/Blues Rock",
                                                         "Blues/Blues ROck",
                                                         "Hard Rock/Metal", 
                                                         "Indie/Alternative Rock", 
                                                         "Punk/Post-Punk/New Wave/Power Pop", 
                                                         "Rock n' Roll/Rhythm & Blues"),
                                `Pop & Soul` = c("Funk/Disco", 
                                                 "Soul/Gospel/R&B", 
                                                 "Singer-Songwriter/Heartland Rock", 
                                                 "Big Band/Jazz"),
                                `Roots & Folk` = c("Country/Folk/Country Rock/Folk Rock", 
                                                   "Blues/Blues Rock", 
                                                   "Singer-Songwriter/Heartland Rock"),
                                `Global Rhythms` = c("Afrobeat", 
                                                     "Latin", 
                                                     "Reggae"),
                                `Hip-Hop & Electronic` = c("Hip-Hop/Rap", 
                                                           "Electronic")))

# Count rows in each collapsed genre (optional, for review)
collapsed_data %>%
    count(genre) %>%
    arrange(desc(n))
## # A tibble: 6 × 2
##   genre                    n
##   <fct>                <int>
## 1 Rock & Alternative     132
## 2 <NA>                   110
## 3 Pop & Soul              94
## 4 Roots & Folk            83
## 5 Hip-Hop & Electronic    68
## 6 Global Rhythms          13
# Perform regression analysis on collapsed genres
reg_coeff_tbl <- collapsed_data %>%
    # Split into a list of data frames by collapsed genre
    split(.$genre) %>%
    
    # Perform regression for each genre group
    map(~lm(formula = spotify_popularity ~ rank_2020, data = .x)) %>%
    
    # Extract coefficients and confidence intervals
    map(broom::tidy, conf.int = TRUE) %>%
    
    # Combine results into a single tibble
    bind_rows(.id = "genre") %>%
    
    # Filter for coefficients of interest (rank_2020)
    filter(term == "rank_2020")

# Adjust signs and visualize results
reg_coeff_tbl %>%
    mutate(estimate = -estimate,
           conf.low = -conf.low,
           conf.high = -conf.high) %>%
    ggplot(aes(x = estimate, y = genre)) +
    geom_point() +
    geom_errorbar(aes(xmin = conf.low, xmax = conf.high)) +
    labs(title = "Effect of Rank on Spotify Popularity by Genre Group",
         x = "Regression Coefficient (Reversed)",
         y = "Genre Group")