# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062305625 -0.0029356841  0.0366064017  0.052133087  4.992299e-02
## 2013-02-28  0.0058904111 -0.0231050093 -0.0129693872  0.016174927  1.267861e-02
## 2013-03-28  0.0009846251 -0.0102350096  0.0129693872  0.040258110  3.726760e-02
## 2013-04-30  0.0096394882  0.0120845638  0.0489677225  0.001222568  1.903001e-02
## 2013-05-31 -0.0202136587 -0.0494830269 -0.0306554215  0.041976878  2.333573e-02
## 2013-06-28 -0.0157782721 -0.0547286224 -0.0271444699 -0.001402849 -1.343434e-02
## 2013-07-31  0.0026874686  0.0131595131  0.0518602560  0.063540876  5.038576e-02
## 2013-08-30 -0.0082974388 -0.0257052994 -0.0197464655 -0.034743000 -3.045160e-02
## 2013-09-30  0.0111434058  0.0695887138  0.0753385935  0.063873280  3.115578e-02
## 2013-10-31  0.0082922156  0.0408610696  0.0320818776  0.034234198  4.526713e-02
## 2013-11-29 -0.0025101740 -0.0025938002  0.0054493836  0.041661174  2.920693e-02
## 2013-12-31 -0.0055835584 -0.0040744757  0.0215282903  0.012891802  2.559607e-02
## 2014-01-31  0.0152922737 -0.0903224345 -0.0534133799 -0.035775083 -3.588433e-02
## 2014-02-28  0.0037569429  0.0332202922  0.0595050852  0.045257415  4.451019e-02
## 2014-03-31 -0.0014815363  0.0380218224 -0.0046024888  0.013315354  8.261513e-03
## 2014-04-30  0.0081831074  0.0077725112  0.0165291395 -0.023184358  6.927176e-03
## 2014-05-30  0.0117215956  0.0290913104  0.0158286510  0.006205544  2.294128e-02
## 2014-06-30 -0.0005756678  0.0237339463  0.0091652585  0.037718328  2.043450e-02
## 2014-07-31 -0.0025120175  0.0135555745 -0.0263797056 -0.052009458 -1.352855e-02
## 2014-08-29  0.0114305854  0.0279044760  0.0018004225  0.043658057  3.870483e-02
## 2014-09-30 -0.0061676573 -0.0808563659 -0.0395985696 -0.061260214 -1.389237e-02
## 2014-10-31  0.0105848003  0.0140962266 -0.0026548113  0.068874574  2.327779e-02
## 2014-11-28  0.0065488072 -0.0155412998  0.0006253892  0.004773795  2.710122e-02
## 2014-12-31  0.0014749701 -0.0404421167 -0.0407468928  0.025295828 -2.539574e-03
## 2015-01-30  0.0203154034 -0.0068951980  0.0062269162 -0.054628126 -3.007717e-02
## 2015-02-27 -0.0089881593  0.0431357191  0.0614504432  0.056915018  5.468207e-02
## 2015-03-31  0.0037404818 -0.0150860189 -0.0143889389  0.010156013 -1.583045e-02
## 2015-04-30 -0.0032333567  0.0662808544  0.0358166578 -0.018417442  9.785953e-03
## 2015-05-29 -0.0043839103 -0.0419108018  0.0019527233  0.007509723  1.277414e-02
## 2015-06-30 -0.0108252523 -0.0297464970 -0.0316787449  0.004171221 -2.052119e-02
## 2015-07-31  0.0085850003 -0.0651782508  0.0201142502 -0.027375369  2.233780e-02
## 2015-08-31 -0.0033640124 -0.0925122045 -0.0771524098 -0.047268429 -6.288651e-02
## 2015-09-30  0.0080813414 -0.0318249895 -0.0451946379 -0.038464471 -2.584723e-02
## 2015-10-30  0.0006858486  0.0618082997  0.0640257952  0.063589474  8.163488e-02
## 2015-11-30 -0.0038983967 -0.0255604013 -0.0075558793  0.024415727  3.648705e-03
## 2015-12-31 -0.0019188551 -0.0389473124 -0.0235951109 -0.052157295 -1.743365e-02
## 2016-01-29  0.0123293338 -0.0516365338 -0.0567578198 -0.060307033 -5.106893e-02
## 2016-02-29  0.0088320962 -0.0082114542 -0.0339140842  0.020605629 -8.259359e-04
## 2016-03-31  0.0087089773  0.1218787676  0.0637458709  0.089910231  6.510015e-02
## 2016-04-29  0.0025460615  0.0040792829  0.0219750985  0.021044231  3.933308e-03
## 2016-05-31  0.0001352208 -0.0376283723 -0.0008558781  0.004397115  1.686847e-02
## 2016-06-30  0.0191666114  0.0445821345 -0.0244917902  0.008291953  3.469801e-03
## 2016-07-29  0.0054298399  0.0524423508  0.0390002829  0.049348456  3.582191e-02
## 2016-08-31 -0.0021559449  0.0087985997  0.0053266982  0.011261250  1.196978e-03
## 2016-09-30  0.0005159036  0.0248727505  0.0132791607  0.008614528  5.813593e-05
## 2016-10-31 -0.0082052164 -0.0083120689 -0.0224035044 -0.038134718 -1.748905e-02
## 2016-11-30 -0.0259898863 -0.0451619574 -0.0179744820  0.125246484  3.617606e-02
## 2016-12-30  0.0025381850 -0.0025298821  0.0267027783  0.031491673  2.006909e-02
## 2017-01-31  0.0021258727  0.0644316316  0.0323819590 -0.012144032  1.773638e-02
## 2017-02-28  0.0064380351  0.0172575387  0.0118364711  0.013428625  3.853926e-02
## 2017-03-31 -0.0005526225  0.0361889862  0.0318056345 -0.006532649  1.249013e-03
## 2017-04-28  0.0090290275  0.0168663993  0.0239523650  0.005107588  9.877382e-03
## 2017-05-31  0.0068476720  0.0280600953  0.0348101105 -0.022862437  1.401416e-02
## 2017-06-30 -0.0001830138  0.0092236560  0.0029558548  0.029151683  6.354832e-03
## 2017-07-31  0.0033344876  0.0565945416  0.0261880794  0.007481251  2.034551e-02
## 2017-08-31  0.0093691971  0.0232436720 -0.0004485032 -0.027564366  2.913587e-03
## 2017-09-29 -0.0057323849 -0.0004460965  0.0233428450  0.082321713  1.994921e-02
## 2017-10-31  0.0009784572  0.0322783753  0.0166535960  0.005915744  2.329075e-02
## 2017-11-30 -0.0014842394 -0.0038969524  0.0068700389  0.036913515  3.010794e-02
## 2017-12-29  0.0047399854  0.0369253964  0.0133982053 -0.003731578  1.205506e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398392e-05 0.0001042101 4.178286e-05 -7.812083e-05 -9.031188e-06
## EEM  1.042101e-04 0.0017547037 1.039015e-03  6.437691e-04  6.795399e-04
## EFA  4.178286e-05 0.0010390148 1.064238e-03  6.490280e-04  6.975393e-04
## IJS -7.812083e-05 0.0006437691 6.490280e-04  1.565447e-03  8.290247e-04
## SPY -9.031188e-06 0.0006795399 6.975393e-04  8.290247e-04  7.408286e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347487
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874121 0.009257123 0.005815635 0.005684456 0.002330248
rowSums(component_contribution)
## [1] 0.02347487
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062305625 -0.0029356841  0.0366064017  0.052133087  4.992299e-02
## 2013-02-28  0.0058904111 -0.0231050093 -0.0129693872  0.016174927  1.267861e-02
## 2013-03-28  0.0009846251 -0.0102350096  0.0129693872  0.040258110  3.726760e-02
## 2013-04-30  0.0096394882  0.0120845638  0.0489677225  0.001222568  1.903001e-02
## 2013-05-31 -0.0202136587 -0.0494830269 -0.0306554215  0.041976878  2.333573e-02
## 2013-06-28 -0.0157782721 -0.0547286224 -0.0271444699 -0.001402849 -1.343434e-02
## 2013-07-31  0.0026874686  0.0131595131  0.0518602560  0.063540876  5.038576e-02
## 2013-08-30 -0.0082974388 -0.0257052994 -0.0197464655 -0.034743000 -3.045160e-02
## 2013-09-30  0.0111434058  0.0695887138  0.0753385935  0.063873280  3.115578e-02
## 2013-10-31  0.0082922156  0.0408610696  0.0320818776  0.034234198  4.526713e-02
## 2013-11-29 -0.0025101740 -0.0025938002  0.0054493836  0.041661174  2.920693e-02
## 2013-12-31 -0.0055835584 -0.0040744757  0.0215282903  0.012891802  2.559607e-02
## 2014-01-31  0.0152922737 -0.0903224345 -0.0534133799 -0.035775083 -3.588433e-02
## 2014-02-28  0.0037569429  0.0332202922  0.0595050852  0.045257415  4.451019e-02
## 2014-03-31 -0.0014815363  0.0380218224 -0.0046024888  0.013315354  8.261513e-03
## 2014-04-30  0.0081831074  0.0077725112  0.0165291395 -0.023184358  6.927176e-03
## 2014-05-30  0.0117215956  0.0290913104  0.0158286510  0.006205544  2.294128e-02
## 2014-06-30 -0.0005756678  0.0237339463  0.0091652585  0.037718328  2.043450e-02
## 2014-07-31 -0.0025120175  0.0135555745 -0.0263797056 -0.052009458 -1.352855e-02
## 2014-08-29  0.0114305854  0.0279044760  0.0018004225  0.043658057  3.870483e-02
## 2014-09-30 -0.0061676573 -0.0808563659 -0.0395985696 -0.061260214 -1.389237e-02
## 2014-10-31  0.0105848003  0.0140962266 -0.0026548113  0.068874574  2.327779e-02
## 2014-11-28  0.0065488072 -0.0155412998  0.0006253892  0.004773795  2.710122e-02
## 2014-12-31  0.0014749701 -0.0404421167 -0.0407468928  0.025295828 -2.539574e-03
## 2015-01-30  0.0203154034 -0.0068951980  0.0062269162 -0.054628126 -3.007717e-02
## 2015-02-27 -0.0089881593  0.0431357191  0.0614504432  0.056915018  5.468207e-02
## 2015-03-31  0.0037404818 -0.0150860189 -0.0143889389  0.010156013 -1.583045e-02
## 2015-04-30 -0.0032333567  0.0662808544  0.0358166578 -0.018417442  9.785953e-03
## 2015-05-29 -0.0043839103 -0.0419108018  0.0019527233  0.007509723  1.277414e-02
## 2015-06-30 -0.0108252523 -0.0297464970 -0.0316787449  0.004171221 -2.052119e-02
## 2015-07-31  0.0085850003 -0.0651782508  0.0201142502 -0.027375369  2.233780e-02
## 2015-08-31 -0.0033640124 -0.0925122045 -0.0771524098 -0.047268429 -6.288651e-02
## 2015-09-30  0.0080813414 -0.0318249895 -0.0451946379 -0.038464471 -2.584723e-02
## 2015-10-30  0.0006858486  0.0618082997  0.0640257952  0.063589474  8.163488e-02
## 2015-11-30 -0.0038983967 -0.0255604013 -0.0075558793  0.024415727  3.648705e-03
## 2015-12-31 -0.0019188551 -0.0389473124 -0.0235951109 -0.052157295 -1.743365e-02
## 2016-01-29  0.0123293338 -0.0516365338 -0.0567578198 -0.060307033 -5.106893e-02
## 2016-02-29  0.0088320962 -0.0082114542 -0.0339140842  0.020605629 -8.259359e-04
## 2016-03-31  0.0087089773  0.1218787676  0.0637458709  0.089910231  6.510015e-02
## 2016-04-29  0.0025460615  0.0040792829  0.0219750985  0.021044231  3.933308e-03
## 2016-05-31  0.0001352208 -0.0376283723 -0.0008558781  0.004397115  1.686847e-02
## 2016-06-30  0.0191666114  0.0445821345 -0.0244917902  0.008291953  3.469801e-03
## 2016-07-29  0.0054298399  0.0524423508  0.0390002829  0.049348456  3.582191e-02
## 2016-08-31 -0.0021559449  0.0087985997  0.0053266982  0.011261250  1.196978e-03
## 2016-09-30  0.0005159036  0.0248727505  0.0132791607  0.008614528  5.813593e-05
## 2016-10-31 -0.0082052164 -0.0083120689 -0.0224035044 -0.038134718 -1.748905e-02
## 2016-11-30 -0.0259898863 -0.0451619574 -0.0179744820  0.125246484  3.617606e-02
## 2016-12-30  0.0025381850 -0.0025298821  0.0267027783  0.031491673  2.006909e-02
## 2017-01-31  0.0021258727  0.0644316316  0.0323819590 -0.012144032  1.773638e-02
## 2017-02-28  0.0064380351  0.0172575387  0.0118364711  0.013428625  3.853926e-02
## 2017-03-31 -0.0005526225  0.0361889862  0.0318056345 -0.006532649  1.249013e-03
## 2017-04-28  0.0090290275  0.0168663993  0.0239523650  0.005107588  9.877382e-03
## 2017-05-31  0.0068476720  0.0280600953  0.0348101105 -0.022862437  1.401416e-02
## 2017-06-30 -0.0001830138  0.0092236560  0.0029558548  0.029151683  6.354832e-03
## 2017-07-31  0.0033344876  0.0565945416  0.0261880794  0.007481251  2.034551e-02
## 2017-08-31  0.0093691971  0.0232436720 -0.0004485032 -0.027564366  2.913587e-03
## 2017-09-29 -0.0057323849 -0.0004460965  0.0233428450  0.082321713  1.994921e-02
## 2017-10-31  0.0009784572  0.0322783753  0.0166535960  0.005915744  2.329075e-02
## 2017-11-30 -0.0014842394 -0.0038969524  0.0068700389  0.036913515  3.010794e-02
## 2017-12-29  0.0047399854  0.0369253964  0.0133982053 -0.003731578  1.205506e-02
calculate_component_contribution <- function(.data, w) {
        
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]

    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    component_percentages
    
    return(component_percentages)  
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1 ))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1 )) %>%
    
    # Tranform to long form
    pivot_longer(cols = everything() ,names_to = "Asset", values_to = "Contribution") 

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = .5)) + 
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and Weight

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1 )) %>%
    
    # Tranform to long form
    pivot_longer(cols = everything() ,names_to = "Asset", values_to = "Contribution") %>% 
    
    # Add weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type" , values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = .5)) + 
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight",          y = "Percent", 
         x = NULL)

6 Rolling Component Contribution